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Content of the Talk

the reduced density operator and
the Quantum Master Equation

some extensions
laser pulse control of open system dynamics

Frenkel-exciton dynamics in chromophore
complexes



The Reduced
Density Operator



complete description by the solution of
the time-dependent Schrodinger equation
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reduced description by the determination
of the density matrix of the primary system
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nonequilibrium density [
operator of the | W(t) = = wa|ta(t))(Ya(t)
fotal system

observables determined by a selected set of coordinates

) ) reduced density
p(t) = AW (t)|or) = trr{W(t)} operator of the
primary system

trace with respect to the secondary system (reservoir)

Computation of the reduced density operator ?



dissipative quantum dynamics -> infroduction of a
system-reservoir Hamiltonian

H(t) = Hg(t) + Hs_r + Hg

Lh2 of purple bacteria

general structure of the density operator equation
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initial coherent dissipative
correlations dynamics dynamics



The Quantum
Master Equation

second-order primary-system reservoir coupling

if necessary neglect of memory effects

factorization of the

Hy g =3 Ky, system-reservoir coupling



dissipative t

part of the Duis(t, to;p) = — ¥ [ dt
quantum usv

master ) .
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memory effects versus Markovian approximation
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reservoir correlation function
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linear coupling to normail
b, = h%%gu(i )Z¢ .~ mode reservoir oscillators

spectral density J
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specftral density representation of the reservoir W

correlation
function Coo(t) = [ dwe ™" w1 — n(w)](Juw (W) — Juo(—w))



representation in the eigenstates
of the molecular Hamiltonian

pan(t) = (Wa|p(t)[Ws)

multi-level Redfield-theory
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Femtosecond Laser Pulse
Control of Open System
Dynamics




optimization of an

OE, = trs{Op(ts E,)} observable at a finite time
(or in a time and parameter

space interval)

control functional
to be optimized JE] = OE,| — 2 [ dt BX(t) — I,)
Lo
-> Optimal Control

Theory

functional equation determining
the optimal pulse

E.(t) = tfs{OU(tfj t: Ee)|ft, p(L; Ee)]}
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Overview

equation of motion methods

dissipation
based on
microscopic
models

non-Markovian
versus
Markovian
equations

Lindblad-type
of dissipation

direct calculation

path-integral
representation

two-level model
of the reservoir

classical description
of the reservoir



Application of the Density Operator Technique in
Theoretical Chemical Physics and Theoretical Chemistry

photoexcitation of molecules in a solvent
(HF, betaine30, pyrazine )

photoinduced ultrafast electron transfer in donor-acceptor
complexes (mixed-valence compounds, reaction center)

photodesorption (NO/Pt(111))
hydrogen-bond dynamics (o-phthalic acid monomethylester)

exciton transfer in chromophore complexes (Lh2, Lhc2, FMO, Ps1)



Reduced Density Matrix Description
of Electronic Frenkel-Excitons

Excitation Energy
Motion in
Photosynthetic
Antennae

primary system: excitons
reservoir: vibrations (mainly infra molecular)
moderate exciton-vibrational coupling



Electronic Level Scheme of the Chromophore Complex




Formation of Delocalized Single- and Two-Exciton States

ground-state

‘050> — g ‘Somg>

single exciton state
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two-exciton state

Th. Renger, V. M., and O. Kuhn,
Phys. Rep. 343, 137 (2001) ag) = X Clag;mn)|dmn)



multiexciton density operator

plans, Bn;t) = (an|p(t)|Bn)

mulfiexciton Quantum Master Equation
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external field exciton exciton-
induced coherent relaxation exciton

motion annihilation



Exciton Relaxation and the Spectral Density
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Exciton Exciton Annihilation
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Transitions between
Chain of Three-Level Molecules  Multiexciton States
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Multiexciton Dynamics and
Transient Absorption of the Lh2

[T T

one-exciton population

two-exciton population B. Bruggemdnn
00 and V. M., JCP 120,
cne 2325 (2004)




Ps1 complex of
Synechococcus elongafus




\ Fs-Laser Pulse Control
ot PN . .
O30T e of Exciton Dynamics

monomeric sfructure
of the FMO complex \g % %
U.(a) E(ot,)

vibrational
wavepackets P.(E) P.(E)

versus excitonic 1
wavepackets o(9) — E(O)




Laser Pulse Excitation Energy Localization
in the FMO-Complex

B. Bruggemann, and V. M., JPC B 108, 10529 (2004)



Excitation Energy Localization
at Chromophore m=7
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Linear versus circular polarization of the control pulse
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Conclusions

What are the applications the reduced density matrix
theory is appropriate for ?

) the experiment suggests a system-reservoir
separation

> weak coupling to the environment

) deftails of the equilibrium state of the
environment are of less importance

) comprohensive description of an experiment
(nonlinear action of ultrafast external fields)
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