
2 Examples of a System Reservoir Separation

we present different examples of a system (the primary, active quantum system) coupled to a

reservoir (environment, thermal bath);

the overall Hamiltonian is written as

H = HS +HS−R +HR

the system part is denoted by HS and the reservoir part by HR;

the system-reservoir coupling will be written as

HS−R =
∑

u

KuΦu

the Ku are operators acting in the state space of the active system;

the Φu are operators acting in the state space of the reservoir;



2.1 Harmonic Oscillator Reservoir

we assume that the reservoir can be represented by normal mode oscillators;

respective coordinates are Z = {Zξ};

the reservoir Hamiltonian can be written as

HR =
∑

ξ

~ωξ(C
+
ξ Cξ + 1/2)

the ωξ are the normal mode frequencies;

C+
ξ and Cξ denote normal mode oscillator creation and annihilation operators, respectively;

harmonic oscillator eigenstates are

|Nξ〉 =
(C+

ξ )
Nξ

√

Nξ!
|0ξ〉

they are labeled by the oscillator quantum numbers Nξ;

we perform a Taylor expansion of HS−R with respect to the reservoir coordinates;

in the lowest-order HS−R becomes linear with respect to Z = {Zξ};

dropping the index u we can write

HS−R = K(s)
∑

ξ

~γξZξ

γξ is the system-reservoir coupling constant;



in terms of the creation and annihilation operators the reservoir coordinates are written as

Zξ =
√

~/2ωξ(Cξ + C+
ξ )

it is more suitable to define Φ in terms of

Qξ = Cξ + C+
ξ

just writing

Φ = ~

∑

ξ

ωξgξQξ

with the dimensionless coupling constant

gξ = γξ

√

~/2ω3
ξ

the obtained system-reservoir coupling reads

HS−R = KΦ



2.2 Electron-Phonon Interaction in Solid-State Systems

electrons in a solid state system form the active system and the lattice vibrations the reservoir

we start with the Hamiltonian of the valence electrons moving across the background of ions

forming a regular lattice

H = Hel +Hel−ion +Hion

electron Hamiltonian

Hel =
∑

j

p2
j

2mel
+

1

2

∑

i,j

e2

|ri − rj|

electron-ion interaction

Hel−ion =
∑

j,n

Vel−ion(rj −Rn)

Hamiltonian of the ions

Hion =
∑

n

P2
n

2Mn
+

1

2

∑

m,n

Vion(Rm −Rn)

the regular lattice is characterized by the equilibrium configuration of the ions R
(0)
n ;

small deviations are denoted by ∆Rn;



it results the Bloch-electron Hamiltonian (single band picture of a metal) including electron-electron

interaction

Hel =
∑

j

( p2
j

2mel
+
∑

n

Vel−ion(rj −R(0)
n )

)

+
1

2

∑

i,j

e2

|ri − rj|
→

∑

k,s

ε(k)a+ksaks + Vel−el

the Hamiltonian of harmonic lattice vibrations defines the phonon Hamiltonian (the acoustic branch)

Hion ≈
1

2

∑

m,n

Vion(R
(0)
m −R(0)

n ) +
∑

n

P2
n

2Mn
+

1

2

∑

m,n

κmn∆Rm∆Rn →
∑

q

~ωq

(

b+q bq + 1/2
)

electron-phonon coupling is defined in the lowest order with respect to ∆Rn

Hel−ion ≈
∑

j,n

∇RnVel−ion(rj −R(0)
n )∆Rn →

∑

k,q,s

Tk+q,k

(

bq + b+−q

)

a+k+qsaks

we compare the obtained expressions with the general form of the system-reservoir coupling

written as

HS−R =
∑

u

KuΦu

the following identifications become possible

Ku = Kq =
∑

k,s

Tk+q,ka
+
k+qsaks

and

Φu = Φq = bq + b+−q



2.3 An Atom Interacting with the Quantized Radiation Field

electrons in an atom form the active system and the photons of the radiation field the reservoir

in order to introduce photons and to derive atom-photon interaction we take the Coulomb gauge

which let become the vector potential transversal, i.e. ∇A = 0;

the longitudinal part of the radiation field is accounted for by the instantaneous Coulomb interaction

among charge distributions;

the atom radiation field Hamiltonian reads

H =
∑

u

1

2mu

[

pu −
qu
c
A(xu, t)

]2

+
1

2

∑

u 6=v

quqv
|xu − xv|

+Hfield

field quantization can be achieved by expanding the vector potential A(r) in terms of plane waves

with wave vectors k pointing in propagation direction;

usually this is done assuming that the radiation field is contained in a volume L3 (box with lengths

L, quantization volume)

A(r) =
∑

λ,k

Nknλk

[

âλke
ikr + H.c.

]

.

the vector potential is a transverse field and every partial wave can be characterized by two (linear

independent) transverse (knλk = 0) polarization directions with unity vectors nλk (λ = 1, 2);

we introduced the normalization constant Nk = (2π~c2/L3ωk)
1/2

as well as the photon dispersion relation ωk = c|k|;



we have the photon creation and annihilation operators, â+λk and âλk, respectively, which fulfill the

commutation relations of harmonic oscillator operators;

with the help of these operators the energy of the photon field can be written as

Hphot =
∑

λ,k

~ωk(a
+
λkaλk + 1/2) .

to describe atom photon interaction we assume that the radiation field is of low intensity such that

the term ∝ A2 can be neglected as compared with the one ∝ pjA;

specifying our consideration to electronic transitions only, the interaction Hamiltonian follows as

(note pjA ∼ ∇jA = 0)

Hint = −
e

melc

∑

j

pjA(rj) = −
e

melc

∑

j

∑

λ,k

Nk[pjnλk]
[

âλke
ikrj + H.c.

]

= −
e

melc

∑

λ,k

Nkâλk
∑

a,b

〈ψa|
∑

j

[nλkpj]e
ikrj |ψb〉|ψa〉〈ψb| + H.c.

next we focus on transitions between the electronic ground state ψg of the atom and a particular

excited state ψe;

if only photons are of interest which wavelength is large compared to the spatial extension of

the atom krj becomes a small quantity; a replacement of the exponential function in the matrix

element by 1 can be carried out; this corresponds to the dipole approximation, since one can

replace the electronic matrix element of the momentum operator by the transition dipole moment;



to show this we start with the equation of motion for the electronic coordinate operator rj given by

i~
∂

∂t
rj = [rj, Hel]− = i~

pj

mel

the matrix elements of the momentum operator can be written as

〈ψe|
∑

j

nλkpj|ψg〉 = −i
mel

~
nλk

∑

j

〈ψe |(rjHel −Hel rj)|ψg〉

=
mel

i~
nλk(Eg − Ee)

∑

j

〈ψe |rj|ψg〉 = i
mel

~e
(Ee − Eg)nλkdeg

deg is the transition dipole matrix element (which should be independent on the nuclear coordi-

nates) and Ee and Eg are electronic energy levels;

we only combine photon absorption with electronic excitation and vice versa and get (~ωeg =

Ee − Eg)

Hint = −
e

melc

∑

λ,k

√

2π~c2

L3ωk

âλki
melωeg
e

[nλkdeg]|ψe〉〈ψg| + H.c.

= −i
∑

λ,k

√

2π~ω2
eg

L3ωk

[nλkdeg]âλk|ψe〉〈ψg| + H.c.



we compare the obtained expressions with the general form of the system-reservoir coupling

written as

HS−R =
∑

u

KuΦu

the following identifications become possible

K1 = |ψe〉〈ψg| = K+
2

and

Φ1 = −i
∑

λ,k

√

2π~ω2
eg

L3ωk

[nλkdeg]âλk = Φ+
2



2.4 An Electron in a Supramolecular Systems Interacting with the Environmental Vibrations

the electron represents the active system and the molecular vibrations the reservoir

Hamiltonian describing the motion of a single excess electron across different molecules labeled

by m

H =
∑

m,n

(

δm,nHm + (1− δm,n)Vmn
)

|ϕm〉〈ϕn|

expansion with respect to states φm localized at the various molecules results in transfer matrix

elemnts Vmn;

the electron shall couple to intramolecular vibrations;

the vibrational Hamiltonian Hm = Tvib + Um corresponds to the state where the excess electron is

localized at molecule m;

the potential energy surface (PES) Um is the one of molecule m in its charged state and all other

molecules in their neutral state

Um(Q) = u(−)
m (Qm) +

∑

n 6=m

u(0)n (Qn)

we introduced the set of vibrational coordinates Qm = {Qmj} which belong to molecule m;



if those are dimensionless and all PES of harmonic type we get

u(−)
m (Qm) = u(−)

m +
∑

j

~ωmj
4

(

Qmj −Q
(−)
mj

)2

and

u(0)m (Qm) = u(0)m +
∑

j

~ωmj
4

Q2
mj

the shift of the vibrational configuration of molecule m upon its charging can be translated into a

linear electron-vibrational coupling

Um(Q) =
∑

n

u(0)n (Qn)+u
(−)
m (Qm)−u

(0)
m (Qm) = U0(Q)+u

(−)
m −u(0)m +

∑

j

~ωmj
4

Q
(−)2
mj −

∑

j

~ωmj
2

Q
(−)
mjQmj

the diagonal part of the original Hamiltonian can be rewritten

H0 =
∑

m

Hm|ϕm〉〈ϕm| =
∑

m

(

Tvib + u0(Q)
)

|ϕm〉〈ϕm| +
∑

m

(

u(−)
m − u(0)m +

∑

j

~ωmj
4

Q
(−)2
mj

)

|ϕm〉〈ϕm|

−
∑

m

∑

j

~ωmj
2

Q
(−)
mjQmj|ϕm〉〈ϕm|

we assume the introduction of harmonic oscillator operators for all vibrations

Qmj = amj + a+mj



we abbreviate (note the inclusion of the vibrational zero-point energy)

Em = u(−)
m − u(0)m +

∑

j

~ωmj
4

(

Q
(−)2
mj + 2

)

and

Kmj = −
~ωmj
2

Q
(−)
mj

it follows

H0 = Hvib +
∑

m

Em|ϕm〉〈ϕm| +Hel−vib

the vibrational Hamiltonian is (reference energy has been set equal to zero)

Hvib =
∑

m,j

~ωmja
+
mjamj

and the electron-vibrational coupling reads

Hel−vib =
∑

m,j

Kmj(amj + a+mj)|ϕm〉〈ϕm|



accordingly the total Hamiltonian is written as

H = Hel +Hel−vib +Hvib

with

Hel =
∑

m,n

hmn|ϕm〉〈ϕn|

and

hmn = δm,nEm + (1− δm,n)Vmn

we compare the obtained expressions with the general form of a system-reservoir coupling; the

following identifications become possible

HS−R = Hel−vib =
∑

m

KmΦm

with

Km = |ϕm〉〈ϕm|

and

Φm =
∑

j

Kmj(amj + a+mj)


