2 Examples of a System Reservoir Separation

we present different examples of a system (the primary, active quantum system) coupled to a
reservoir (environment, thermal bath);

the overall Hamiltonian is written as
H = Hs+ Hyg g+ Hg

the system part is denoted by Hg and the reservoir part by Hy;

the system-reservoir coupling will be written as
HS—R — Z Kuq)u

the K, are operators acting in the state space of the active system;
the &, are operators acting in the state space of the reservoir;



2.1 Harmonic Oscillator Reservoir

we assume that the reservoir can be represented by normal mode oscillators;
respective coordinates are Z = {Z,};
the reservoir Hamiltonian can be written as

Hp =Y hwe(C/ Ce +1/2)
3

the w, are the normal mode frequencies;
(Jg and C; denote normal mode oscillator creation and annihilation operators, respectively;
harmonic oscillator eigenstates are
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they are labeled by the oscillator quantum numbers N¢;
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we perform a Taylor expansion of Hg_r with respect to the reservoir coordinates;
in the lowest-order Hs_r becomes linear with respect to Z = {Z;};
dropping the index « we can write

Hs g = K(s) Z hryeZe
§

"¢ is the system-reservoir coupling constant;



in terms of the creation and annihilation operators the reservoir coordinates are written as

Ze = \/h/ng(Cg + Cg)

it is more suitable to define ¢ in terms of
Qe =Ce + Cg

just writing

O =h> wegeQe
3
with the dimensionless coupling constant

g¢ = ey I/ 2w}

the obtained system-reservoir coupling reads
Hg p=K®



2.2 Electron-Phonon Interaction in Solid-State Systems

electrons in a solid state system form the active system and the lattice vibrations the reservoir

we start with the Hamiltonian of the valence electrons moving across the background of ions
forming a regular lattice
H = Hel + Hel—ion + Hion
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electron Hamiltonian
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electron-ion interaction

Hamiltonian of the ions
Hion —

% Z ‘/ion(Rm _ Rn)

the regular lattice is characterized by the equilibrium configuration of the ions R
small deviations are denoted by AR,;;



it results the Bloch-electron Hamiltonian (single band picture of a metal) including electron-electron
interaction
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the Hamiltonian of harmonic lattice vibrations defines the phonon Hamiltonian (the acoustic branch)
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electron-phonon coupling is defined in the lowest order with respect to AR,
Hesion = Y _ VR, Vecion(r; = RW)AR, = > Tirqu(bg + 0" ) 0y o 0ncs
im k,q,s
we compare the obtained expressions with the general form of the system-reservoir coupling
written as

Hg g = Z K,®,

the following identifications become possible
Ku — Kq — Z Tk—i—q,ka}tjuqsa'ks
k,s

and
D, = g = bq + b7,



2.3 An Atom Interacting with the Quantized Radiation Field

electrons in an atom form the active system and the photons of the radiation field the reservoir

in order to introduce photons and to derive atom-photon interaction we take the Coulomb gauge
which let become the vector potential transversal, i.e. VA = 0;

the longitudinal part of the radiation field is accounted for by the instantaneous Coulomb interaction
among charge distributions;

the atom radiation field Hamiltonian reads

Qu quqy
ng Pu ™ 7 A(x Z\XU—XU\+ field

field quantization can be achieved by expanding the vector potential A(r) in terms of plane waves
with wave vectors k pointing in propagation direction;

usually this is done assuming that the radiation field is contained in a volume L? (box with lengths
L, quantization volume)

= E Nynjk {CALAkGZkr + H.c.
Ak

the vector potential is a transverse field and every partial wave can be characterized by two (linear
independent) transverse (kny, = 0) polarization directions with unity vectors n,x (A = 1, 2);

we introduced the normalization constant Ny = (2rhc?/ L3wy)'/?

as well as the photon dispersion relation wy = c|k|;



we have the photon creation and annihilation operators, djk and a,y, respectively, which fulfill the
commutation relations of harmonic oscillator operators;
with the help of these operators the energy of the photon field can be written as

thot = Z hwk(ajkakk + 1/2) .
Ak
to describe atom photon interaction we assume that the radiation field is of low intensity such that
the term o A* can be neglected as compared with the one o« p;A;

specifying our consideration to electronic transitions only, the interaction Hamiltonian follows as
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next we focus on transitions between the electronic ground state 7, of the atom and a particular
excited state v, ;

if only photons are of interest which wavelength is large compared to the spatial extension of
the atom kr; becomes a small quantity; a replacement of the exponential function in the matrix
element by 1 can be carried out; this corresponds to the dipole approximation, since one can
replace the electronic matrix element of the momentum operator by the transition dipole moment;



to show this we start with the equation of motion for the electronic coordinate operator r; given by

Zh@ = [r;, Ha]- = ihmel

the matrix elements of the momentum operator can be written as
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d., is the transition dipole matrix element (which should be independent on the nuclear coordi-
nates) and E. and E, are electronic energy levels;
we only combine photon absorption with electronic excitation and vice versa and get (hw., =

Ee o Eg)
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we compare the obtained expressions with the general form of the system-reservoir coupling
written as

Hs g = Z K,®,
the following identifications become possible

Ky = ‘¢e><¢g‘ — K2+
and




2.4 An Electron in a Supramolecular Systems Interacting with the Environmental Vibrations

the electron represents the active system and the molecular vibrations the reservoir

Hamiltonian describing the motion of a single excess electron across different molecules labeled
by m

H =" (mnHm + (1= 6pn)Vinn) [om) (o0l
expansion with respect to states ¢,, localized at the various molecules results in transfer matrix
elemnts V,,,,;
the electron shall couple to intramolecular vibrations;
the vibrational Hamiltonian H,, = T.;, + U,, corresponds to the state where the excess electron is
localized at molecule m;
the potential energy surface (PES) U,, is the one of molecule m in its charged state and all other
molecules in their neutral state

Un(@Q) = ul (Qu) + > ul(Qn)
n#m
we introduced the set of vibrational coordinates @,, = {@,,,;} which belong to molecule m;



if those are dimensionless and all PES of harmonic type we get
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the shift of the vibrational configuration of molecule m upon its charging can be translated into a
linear electron-vibrational coupling
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the diagonal part of the original Hamiltonian can be rewritten
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we assume the introduction of harmonic oscillator operators for all vibrations

Qmj—amj+a m



we abbreviate (note the inclusion of the vibrational zero-point energy)

B =) — )+ 30125 (Q 7 4
J

and -
ij — _%ng}

it follows
HO - Hvib + Z Em’(pm> <90m‘ + Hel—vib

the vibrational Hamiltonian is (reference energy has been set equal to zero)
Hvib — Z hwmja;;jamj

m,j
and the electron-vibrational coupling reads
Hel—vib — Z ij(amj =+ ar—i;m)|90m> <§0m‘

m,j



accordingly the total Hamiltonian is written as
H = Hq+ He—viv + Huip

with
Hey = Z hmn’90m> <90n‘

and
hmn - 5m,nEm + (1 - 5m,n)vmn

we compare the obtained expressions with the general form of a system-reservoir coupling; the
following identifications become possible

Hs g = Hevin = » Ky,

with
K, = ’¢m> <90m’

and
Oy =Y Kpjlam; +a))

J



