
1.2 The Time–Dependent Schr ödinger Equation

using the state vector notation we get

i~
∂

∂t
|Ψ(t)〉 = H|Ψ(t)〉

the initial value of the state vector is |Ψ0〉 ≡ |Ψ(t0)〉;
if the Hamiltonian is time–independent a formal solution is given by

|Ψ(t)〉 = e−iH(t−t0)/~|Ψ0〉

introduction of the time–evolution operator

U(t, t0) ≡ U(t − t0) = e−iH(t−t0)/~

U(t, t0) is unitary and obeys the following equation of motion

i~
∂

∂t
U(t, t0) = HU(t, t0)

with the initial condition U(t0, t0) = 1;
the time–evolution operator has the important property that it can be decomposed as

U(t, t0) = U(t, tN−1)U(tN−1, tN−2) . . . U(t2, t1)U(t1, t0)

where t1 ≤ t2 . . . ≤ tN−1 are arbitrary times in the interval [t0, t];
if the solution of the stationary Schrödinger equation

H|λ〉 = Eλ|λ〉

with eigenstates |λ〉 and eigenvalues Eλ is known, on can solve the time–dependent
Schrödinger equation via an expansion with respect to the states |λ〉

|Ψ(t)〉 =
∑

λ

cλ(t)|λ〉 .

cλ(t) = 〈λ|e−iEλ(t−t0)/~|Ψ0〉 = e−iEλ(t−t0)/~cλ(t0) ,

|Ψ(t)〉 =
∑

λ

cλ(t0)e
−iEλ(t−t0)/~|λ〉

the superposition state is known as a wave packet;
since the state vector |Ψ(t)〉 is given here as a superposition of (time–dependent) states
cλ(t)|λ〉, it is alternatively called coherent superposition state;
let us calculate the time–dependent expectation value of the operator Ô:

O(t) = 〈Ψ(t)|Ô|Ψ(t)〉 =
∑

λ,κ

c∗λ(t0)cκ(t0)〈λ|Ô|κ〉ei(Eλ−Eκ)(t−t0)/~

the different time–dependent contributions are determined by transition frequencies
ωλκ = (Eλ − Eκ)/~;
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1.2.1 The Interaction Representation

we assume
H = H0 + V

where V represents a small perturbation of the dynamics given by H0;
a perturbation expansion with respect to V can be performed; the solution of the time–
dependent Schrödinger equation reads

|Ψ(t)〉 = U(t, t0)|Ψ(t0)〉

is conveniently written as
|Ψ(t)〉 = U0(t, t0)|Ψ

(I)(t)〉

this representation makes use of the formal solution which is available for the unper-
turbed time–dependent Schrödinger equation for H0, i.e.

U0(t, t0) = e−iH0(t−t0)/~

the new state vector |Ψ(I)(t)〉 is called the state vector in the interaction representation;
since U(t0, t0) = 1 we have

|Ψ(I)(t0)〉 = |Ψ(t0)〉

the equation of motion for the state vector in the interaction representation follows
directly from the original time–dependent Schrödinger equation,

i~
∂

∂t
|Ψ(t)〉 = U0(t, t0)

(

H0|Ψ
(I)(t)〉 + i~

∂

∂t
|Ψ(I)(t)〉

)

= H|Ψ(t)〉

after some rearrangement we get (note that U−1 = U+)

i~
∂

∂t
|Ψ(I)(t)〉 = U+

0 (t, t0)V U0(t, t0)|Ψ
(I)(t)〉 ≡ V (I)(t)|Ψ(I)(t)〉

the quantity V (I)(t) is the interaction representation of the perturbational part of the
Hamiltonian;
the formal solution is obtained by introducing the so–called S–operator (the scattering
matrix)

|Ψ(I)(t)〉 = S(t, t0)|Ψ
(I)(t0)〉 ≡ S(t, t0)|Ψ(t0)〉

it follows
U(t, t0) = U0(t, t0)S(t, t0)

the S–operator can be determined by the iterative solution of the equation of motion;
formal time–integration gives

|Ψ(I)(t)〉 = |Ψ(I)(t0)〉 −
i

~

t
∫

t0

dτV (I)(τ)|Ψ(I)(τ)〉

this equation is suited to develop a perturbation expansion with respect to V (I). If there
is no interaction one gets

|Ψ(I,0)(t)〉 = |Ψ(I)(t0)〉

9



next we get the state vector in the interaction representation, which is the first–order
correction to |Ψ(I,0)(t)〉 in the presence of a perturbation,

|Ψ(I,1)(t)〉 = −
i

~

t
∫

t0

dτ1V
(I)(τ1)|Ψ

(I,0)(τ1)〉

upon further iteration of this procedure one obtains the nth–order correction as

|Ψ(I,n)(t)〉 = −
i

~

t
∫

t0

dτnV
(I)(τn)|Ψ(I,n−1)(τn)〉

the total formally exact state vector in the interaction representation is

|Ψ(I)(t)〉 =
∞
∑

n=0

|Ψ(I,n)(t)〉

let us consider the total wave function containing the effect of the interaction up to the
order n

|Ψ(I,n)(t)〉 =

(

−
i

~

)n
t
∫

t0

dτnV
(I)(τn)

τn
∫

t0

dτn−1V
(I)(τn−1) × . . .

. . . ×

τ2
∫

t0

dτ1V
(I)(τ1)|Ψ

(I)(t0)〉

=

(

−
i

~

)n
1

n!
T̂

t
∫

t0

dτn . . . dτ1V
(I)(τn) . . . V (I)(τ1)|Ψ

(I)(t0)〉

in the last part of this expression all integrals are carried out to the upper limit t; double
counting is compensated for by the factor 1/n!; in order to account for the fact that the
time–dependent operators V (I) do not commute for different time arguments the time
ordering operator T̂ has been introduced; it orders time–dependent operators from the
right to the left with increasing time arguments, i.e., if t1 > t2, T̂ [V (I)(t2)V

(I)(t1)] =
V (I)(t1)V

(I)(t2);
this formal rearrangement enables us to write for the exact state vector in the interaction
representation

|Ψ(I)(t)〉 = T̂
∞
∑

n=0

1

n!

n
∏

k=1



−
i

~

t
∫

t0

dτkV
(I)(τk)



 |Ψ(I)(t0)〉 .

the summation on the right–hand side is formally identical to the expansion of the
exponential function

S(t, t0) = T̂ exp







−
i

~

t
∫

t0

dτV (I)(τ)







.
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1.3 Golden Rule Rate Formula

the Golden Rule rate formula offers a simple way to determine the transition rate be-
tween different quantum states of some zeroth–order Hamiltonians in the presence of
a small coupling;
basic assumption is that the transitions are irreversible (transition into a macroscopic
number of final states);
mutual interferences among the final states and with the initial state preclude any re-
currence of probability back into the initial state;
recurrences are additionally suppressed when the coupling between the initial and final
states is sufficiently weak;
irreversible transition can also be found if a fast relaxation from the final state to further
additional states is possible; the final state itself may be discrete, but there is a coupling
to another continuum of states;
the rate of internal conversion (IC) between an excited electronic state φe and the elec-
tronic ground–state φg will be considered as an example;
electronic excitation energy is distributed among the different vibrational degrees of
freedom; since the radiation field does not take part in this type transition, it is also
called radiationless transition; often the internal conversion is slow compared to the
time scale of vibrational relaxation within an electronic state and therefore it can be
characterized by a transition rate; (for stronger nonadiabatic coupling one cannot as-
sume complete vibrational equilibrium for every step of the transition; if vibrational re-
laxation can be completely neglected a description in terms of wave functions becomes
possible)
the respective Hamiltonian in the electron vibrational state representation reads

HIC =
∑

a=e,g

∑

µ

Eaµ|Ψaµ〉〈Ψaµ| +
∑

µ,ν

(

Θeµ,gν |Ψeµ〉〈Ψgν | + H.c.
)

1.3.1 Transition from a Single State into a Continuum

we consider quantum transitions between the single state |Ψeµ〉 into the continuum of
states |Ψgν〉;
the related transfer of occupation probability can be characterized by looking at the
population of state |Ψeµ〉 (survival probability) which reads

Peµ(t) = |〈Ψeµ|U(t)|Ψeµ〉|
2

to get this quantity let us derive equations of motion for general matrix elements of the
time–evolution operator (transition amplitude)

Aαβ(t) = θ(t)〈Ψα|U(t)|Ψβ〉

the unit–step function θ(t) has been introduced to restrict non–zero values of Aαβ(t) to
times larger than zero;
the equations of motion for the transition amplitudes read

i~
∂

∂t
Aαβ = i~δ(t)δα,β +

∑

γ

〈Ψα|HIC|Ψγ〉Aγβ
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in order to solve this equation we introduce the Fourier transform of the transition am-
plitudes

Aαβ(ω) =

∫

dt eiωtAαβ(t)

we obtain for the transition amplitudes the following equations

~ωAαβ(ω) = i~δα,β +
∑

γ

〈Ψα|HIC|Ψγ〉Aγβ(ω)

in particular for α = β = eµ this gives

~ωAeµ,eµ(ω) = i~ + EeµAeµ,eµ(ω) +
∑

ν

Θeµ,gνAgν,eµ(ω)

the off–diagonal elements, Agν,eµ(ω), can be obtained from

~ωAgν,eµ(ω) = EgνAgν,eµ(ω) + Θgν,eµAeµ,eµ(ω)

note the restriction to the single vibrational state in the excited electronic state, i.e. we
set

∑

κ

Θgν,eκAeκ,eµ(ω) ≈ Θgν,eµAeµ,eµ(ω)

in a more general frame this approximation corresponds to the case of a weak non–
adiabatic coupling (higher order contributions are neglected);
inserting the solution of this equation into the equation for Aeµ,eµ yields a closed equa-
tion for this quantity which can be solved to give

Aeµ,eµ(ω) = i~

(

~ω − Eeµ −
∑

ν

|Θeµ,gν |
2

~ω − Egν + iε
+ iε

)−1

here, ε has to be understood as a small and positive number which we will let go to
zero at the end of the calculation;
the contributions in the denominator of Aeµ,eµ(ω), which are proportional to the square
of the coupling matrix, result in a complicated frequency dependence of Aeµ,eµ(ω); one
effect is apparent: the coupling to the continuum shifts the energy Eeµ of the initial state
to a new value; this shift, which is in general a complex quantity, is commonly called
self–energy

Σeµ(ω) =
∑

ν

|Θeµ,gν |
2

~ω − Egν + iε

the separation into a real and imaginary part gives

Σeµ(ω) ≡ ~∆Ωeµ(ω) − i~Γeµ(ω) =
∑

ν

P
|Θeµ,gν |

2

~ω − Egν

− iπ
∑

ν

|Θeµ,gν |
2δ(~ω − Egν)

if the coupling matrix does not strongly depend on the vibrational quantum number ν,
the variation of the self–energy in the region where ~ω ≈ Egν can be expected to be
rather weak; this means that the frequency dependence of Aeµ,eµ(ω) is dominated by
the resonance at ~ω = Eeµ; since this will give the major contribution to the inverse
Fourier transform we can approximately replace ~ω in Σeµ(ω) by Eeµ;
to carry out the inverse Fourier transformation we replace the quantity Σeµ(ω) by the
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frequency–independent value Σ(Eeµ/~) and obtain the desired state population Peµ(t)
as

Peµ(t) =

∣

∣

∣

∣

∫

dω

2π
e−iωt i~

~ω − (Eeµ + ~∆Ω(Eeµ/~)) + i~Γ(Eeµ/~)

∣

∣

∣

∣

2

= θ(t) e−2Γ(Eeµ/~)t

the integral has been calculated using the residue theorem of the theory of complex
functions; we may close the ω–integral in the complex plane; to guarantee convergence
via exp−iωt and at positive time–arguments this has to be done in the lower half–plane

1

2π

∮

dω e−iωt i~

~ω − (Eeµ + ~∆Ω(Eeµ/~)) + i~Γ(Eeµ/~)

= −
1

2πi
θ(t)(−2πi) exp

(

− i[Eeµ + ~∆Ω(Eeµ/~)) − i~Γ(Eeµ/~)]t/~

)

the absolute square of the expression gives the result already quoted above;
as expected the occupation probability of the initially occupied state |eµ〉 decreases in
time due to transitions into the manifold of states |gν〉;
the rate of change of the survival probability is defined as

keµ = 2Γeµ =
2π

~

∑

ν

|Θeµ,gν |
2δ(Eeµ − Egν)

this type of expression is known as the Golden Rule of quantum mechanics;
the delta function appearing in the rate expression can be interpreted as the energy
conservation law for the transition; only those transitions from |Ψeµ〉 to |Ψgν〉 are possi-
ble for which the energy of the initial state Eeµ matches some energy Egν of the final
states;

1.3.2 Transition Rate for a Thermal Ensemble

we consider an ensemble of Nmol independent but identical molecules (with a weak in-
tramolecular nonadiabatic coupling); in this case the initially prepared state |Ψeµ〉 may
be different for each member of the ensemble;
all molecules are counted by the additional index m; the population Pmeµ(t) gives
the probability the molecule m is in the particular electron–vibrational state; its time–
dependence follows as

Pmeµ(t) = θ(t)e−keµtPmeµ(0)

where Pmeµ(0) defines the probability to have molecule m initially in the particular
electron–vibrational state;
since different molecules are in different vibrational states it makes sense to introduce
the quantity

Pme(t) =
∑

µ

Pmeµ(t)

it gives the probability to have molecule m in the electronic state independent on the
actual vibrational state; it represents a reduced probability; often observables mea-
sured in the experiment are only determined by this quantity; in the following we will
focus on its computation;
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we assume that initially all molecules have been in the excited electronic state, then,
we get

∑

m

Pme(0) = Nmol

it is suitable, to introduce the probability Peµ(t) to have the state |Ψeµ〉 realized in the
ensemble

Peµ(t) =
1

Nmol

∑

m

Pmeµ(t)

if we assume that the ensemble stays initially in thermal equilibrium with some envi-
ronment at temperature T we can write

Peµ(0) = feµ

where we introduced the quantum statistical equilibrium distribution

feµ =
exp(−Eeµ/kBT )

∑

ν exp(−Eeν/kBT )

to discuss this case where a finite coupling to the environment is present, two charac-
teristic times will be introduced; first, we have the time scale τS−R which characterizes
the coupling of the different members of the ensemble to the thermal reservoir; second,
the nonadiabatic coupling introduces a time scale given by 1/keµ;
now we can distinguish the cases τS−R ≫ 1/keµ (slow thermalization compared to the
transition), τS−R ≪ 1/keµ (fast thermalization), and τS−R ≈ 1/keµ (intermediate case);
Case τS−R ≫ 1/keµ:
we suppose that the interaction with an external field promotes the ensemble into the
state manifold {|Ψeµ〉}, where each state occurs Neµ times in the ensemble; since the
interaction with the environment is weak compared to the state coupling the population
will evolve according to

Pe(t) =
∑

µ

Neµ

Nmol

exp(−keµt)

as stated above (absence of thermalization on the time–scale of the transfer).
Case τS−R ≪ 1/keµ:
thermalization proceeds at every time–step of the transfer; to derive the appropriate
equations typical for thermalization let us introduce the time–step ∆t ≈ τS−R; usually
we will be interested in the time evolution of the system on time scales much longer
than ∆t such that we can consider ∆t to be a continuous quantity on the time scale of
observation (coarse graining of the time axis);
at the initial time the population of the manifold {|Ψeµ〉} is thermalized; starting at t = 0
we get for t = ∆t

Peµ(∆t) ≃ (1 − keµ∆t)Peµ(0) = (1 − keµ∆t)feµ

we note
1 = Pe(0) =

∑

µ

feµ

and obtain for the total electronic state population

Pe(∆t) ≈ 1 −
∑

µ

keµfeµ∆t = Pe(0) −
∑

µ

keµfeµPe(0)∆t
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because we are using a course–grained time axis where the state population Peµ(t) is
thermalized within the time step ∆t we can generalize this expression and obtain for
each t

Pe(t + ∆t) ≈ Pe(t) −
∑

µ

keµfeµPe(t)∆t

since ∆t has been assumed to be very small we can rewrite the expression for the total
population as

Pe(t + ∆t) − Pe(t)

∆t
≈

∂

∂t
Pe(t) = −ke→gPe(t) ,

where we introduced the rate for transitions from a thermalized state manifold

ke→g =
∑

µ

feµkeµ =
2π

~

∑

µ,ν

feµ|Θeµ,gν |
2 δ(Eeµ − Egν)

the strong coupling of the system of interest to a thermal reservoir leads to a thermal-
ization which is fast compared to the transfer, i.e., every step of probability transfer from
the manifold of initial states to the manifold of final states starts from a thermalized ini-
tial state population;
Case τS−R ≈ 1/ka:
in this case one can no longer make a separation of time scales and the reasoning used
in the previous two cases breaks down; a more general description of the simultaneous
influence of the interstate coupling and the coupling to the reservoir is necessary; this
more general approach is offered by the density matrix theory;

1.3.3 Consideration of the Transition Rate

Principle of Detailed Balance

up to now our discussion has been concentrated on the transitions from the states |Ψeµ〉
(the initial states) to the states |Ψgν〉 (the final states); of course, one can consider also
the reverse process along the same line of arguments; we expect that the reverse rate
kg→e follows by interchanging Eeµ with Egν in the thermal distribution (transfer starts
from the thermalized distribution at the state manifold |Ψgν〉)

kg→e =
2π

~

∑

ν,µ

fgν |Θgν,eµ|
2 δ(Egν − Eeµ)

we relate both rates to each other; noting the presence of the δ–function we may re-
place in kg→e the distribution fgν by the new distribution

f̃eµ =
exp(−Eeµ/kBT )

∑

κ

exp(−Egκ/kBT )
=

∑

λ

exp(−Eeλ/kBT )

∑

κ

exp(−Egκ/kBT )
× feµ

this already gives

kg→e =

∑

λ

exp(−Eeλ/kBT )

∑

κ

exp(−Egκ/kBT )
ke→g = ke→g exp

(

− [Ee − Eg]/kBT
)

∑

λ

exp(−∆Eeλ/kBT )

∑

κ

exp(−∆Egκ/kBT )
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we introduced electronic reference energies Ea including the zero point energy of the
molecular vibrations according to

Eaµ = Ea + ∆Eaµ

we further assume
∑

λ

exp(−∆Eeλ/kBT ) =
∑

κ

exp(−∆Egκ/kBT )

and arrive at the detailed balance principle (∆E = Ee − Eg)

kg→e = e−∆E/kBT ke→g

in the case of IC, ∆E amounts values of 1 ... 3 eV; it is much larger than thermal energy
(at room temperature) and thus kg→e ≈ 0

Representation of the Rate by a Correlation Function

next we present an alternative notation which takes into account the structure of the
molecular states; to stay simple we neglect the operator character of Θab and consider
it as a simple complex valued matrix element

Θeµ,gν = 〈χeµ|Θ̂eg|χgν〉 = 〈χeµ|
(

〈φe|[Tnuc|φg〉] +
∑

n

1

Mn

〈φe|[Pn|φg〉]Pn

)

|χgν〉

≈ Θeg〈χeµ|χgν〉

moreover, the δ–function is replaced by a time integral; altogether results in

ke→g =
2π|Θeg|

2

~

∑

µ,ν

feµ|〈χeµ|χgν〉|
2

∫

dt

2π~
ei(Eeµ−Egν)t/~

=
|Θeg|

2

~2

∫

dt
∑

µ,ν

feµ〈χeµ|e
iEeµt/~e−iEgνt/~|χgν〉〈χgν |χeµ〉

=
|Θeg|

2

~2

∫

dt trvib{R̂ee
iHet/~e−iHgt/~}

we used the definition of the trace with respect to the vibrational states

trvib{...} =
∑

µ

〈χeµ|...|χeµ〉

and introduced the equilibrium statistical operator according to

〈χeµ|feµ = 〈χeµ|R̂e

consequently it has the structure

R̂e =
exp(−He/kBT )

trvib{exp(−He/kBT )}
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Estimate of the Rate

finally we present an estimate of the rate for the case that only a single vibrational coor-
dinate defines the vibrational states (diatomic molecule, or only a single normal mode
vibration of a polyatomic molecules changes strongly upon electronic transitions); ac-
cording to the derivation of the rate formula this case of discrete final state energies
requires the introduction of additional decay processes of the electronic ground–state
vibrational states; it might be possible be introducing a finite life time τ of these states;
the vibrational energies are written as

Eaµ = Ea + ~ωvibµ

the energy Ea defines the electronic energy plus zero–point energy of the harmonic
vibrations; the respective vibrational energy quantum ~ωvib is considered to be identical
for both electronic states; moreover we take the approximation

Θeµ,gν ≈ Θeg〈χeµ|χgν〉

and consider the zero–temperature case; then, the rate takes the form

ke→g =
2π|Θeg|

2

~

∞
∑

ν=0

|〈χeµ|χgν〉|
2 δ(Ee − Eg − ~ωvibν)

the formula indicates that strict coincidence of initial and final state energy of the tran-
sition is necessary; the divergent behavior indicates that for the present case no mean-
ingful rate can be defined;
we change to a δ–function which has been broadened by the inverse life time of vibra-
tional states

δ(Ee − Eg − ~ωvibν) →
1/πτ

(Ee − Eg − ~ωvibν)2 + (1/τ)2
(1.1)

if Ee = Eg + ~ωvibν this gives the rate as

ke→g ≈
2τ |Θeg|

2

~
|〈χeµ|χgν〉|

2

it is mainly determined by the vibrational overlap expressions 〈χeµ|χgν〉

1.3.4 Rate Equations for Internal Conversion

if we account for the back transfer we have to set

∂

∂t
Pe(t) = −ke→gPe(t) + kg→ePg(t)

however, the single rate equation for Pe(t) has to be completed by that for Pg(t)

∂

∂t
Pg(t) = −kg→ePg(t) + ke→gPe(t)

we obtained the Pauli Master Equations;
it is easy to find the solution of the above given coupled rate equations; because con-
servation of probability Pe(t) + Pg(t) = 1 holds, the two equations can be transformed
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to a single one for Pe(t) − Pg(t); taking as the initial condition Pe(0) = 1 the solutions
read (note K = ke→g + kg→e)

Pe(t) =
1

K

(

ke→ge
−Kt + kg→e

)

Pg(t) =
ke→g

K

(

1 − e−Kt
)

.

It is instructive to put both solutions (a = g, e) into the form

Pa(t) = Pa(∞) +
(

Pa(0) − Pa(∞)
)

e−Kt .

with Pe(∞) = kg→e/K and Pg(∞) = ke→g/K;
as it has to be expected the result indicates a complete depletion of the initial state if
there is no back–transfer (kg→e = 0); otherwise both manifolds remain populated;

a generalization of the Pauli Master Equation to a larger set of different states is
straightforward; to obtain a general solution of the related rate equations we denote
the right–hand side as −

∑

b KabPb with the general rate–matrix Kab = δab

∑

c 6=a ka→c

−(1 − δab)kb→a; given the eigenvalues κ(η) and (normalized) eigenvectors ea(η) of Kab,
the general solution for the population of state |a〉 reads as (η counts the rate–matrix
eigenvalues)

Pa(t) =
∑

η

c(η)ea(η) exp(−κ(η)t)

the additional factors c(η) are determined from the initial conditions; the decay of the
various populations is multi–exponential; since the smallest κ(η) equals zero the re-
spective term in Pa(t) fixes Pa(∞); it is obvious that the given solution (except some
special examples) can be only achieved by numerical computations;
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