1.2 The Time—-Dependent Schr Gdinger Equation

using the state vector notation we get
z‘h—a |W(t)) = H|V(t))
ot B

the initial value of the state vector is |Uy) = |¥(to));
if the Hamiltonian is time—independent a formal solution is given by

W(t)) = e HE—0)/M )
introduction of the time—evolution operator
U(t,to) = U(t — to) = e H-10)/R

U(t,tp) is unitary and obeys the following equation of motion

L0
ZhaU(t, to) = HU(t, to)

with the initial condition U (¢, ty) = 1;
the time—evolution operator has the important property that it can be decomposed as

U(t, to) - U(t, thl)U(thla tN,Q) “e U(tg, tl)U(tl, to)

where t; <t,... <ty_; are arbitrary times in the interval [t, t];
if the solution of the stationary Schrodinger equation

HIX) = Ex|A)

with eigenstates |\) and eigenvalues F, is known, on can solve the time—dependent
Schrddinger equation via an expansion with respect to the states |\)

MOIEDIRNGIE

ex(t) = <)\|e*iEA(t*t0)/h’\I/0> - 6*iEA(t*t0)/hc>\(t0) 7

() =D ealto)e Py

the superposition state is known as a wave packet;

since the state vector |¥(¢)) is given here as a superposition of (time—dependent) states
ex(t)|N), itis alternatively called coherent superposition state;

let us calculate the time—dependent expectation value of the operator O:

O(t) = (\I!(t)|(5\\11(t)> = Zcj(t())q{(to)<>\‘O|li>€i(E/\fE,{)(t7t0)/h

AR

the different time—dependent contributions are determined by transition frequencies
Wik = (E/\ - E,{)/h,



1.2.1 The Interaction Representation

we assume
H=Hy+V

where V represents a small perturbation of the dynamics given by H;
a perturbation expansion with respect to V' can be performed; the solution of the time—
dependent Schrddinger equation reads

(W (t)) = Ut to)[¥(to))
is conveniently written as
(W (t)) = Uo(t, to) [ WD (1))

this representation makes use of the formal solution which is available for the unper-
turbed time—dependent Schrodinger equation for Hy, i.e.

Uo(t,to) _ e—iHO(t—to)/h

the new state vector |[¥(V(¢)) is called the state vector in the interaction representation;
since U (ty,tp) = 1 we have

(0O (k) = [¥(to))

the equation of motion for the state vector in the interaction representation follows
directly from the original time—dependent Schrddinger equation,

9 0
zham’(t» = Un(t, to) (H0|‘I’(I)(t)> + mam’(l)(t») = H[¥ (1))
after some rearrangement we get (note that U~! = U™)
Z””‘L%N"”(t» = Us (1, to)VU(t, 1) [ ¥V (1)) = VO (1) [ ¥V (1))

the quantity V(' (¢) is the interaction representation of the perturbational part of the
Hamiltonian;
the formal solution is obtained by introducing the so—called S—operator (the scattering
matrix)

(WD) = S(t, )| WV (ko)) = S(t, 10)[ W (ko))
it follows

Ult, to) = Uy(t, to)S(t,t0)

the S—operator can be determined by the iterative solution of the equation of motion;
formal time—integration gives

t
]

m/mwwﬂwmﬁ»

to

(w0 (1)) = [¥0(to))

this equation is suited to develop a perturbation expansion with respect to V(. If there
iS no interaction one gets
(1)) = |90 (ko))



next we get the state vector in the interaction representation, which is the first—order
correction to |¥(:0(¢)) in the presence of a perturbation,

t

W) =~ [ V() m))

to
upon further iteration of this procedure one obtains the nth—order correction as

t

n i e
WD) =~ [ VO ,)

to

the total formally exact state vector in the interaction representation is

[e.9]

wO@) =Y 1)

n=0

let us consider the total wave function containing the effect of the interaction up to the

order n .
|w@“@»::(_%)(/d%vﬂwm{/quvﬂ%mq>X~~

to to

T2

WX/MNWMWWW>

to

¢
. n 1 .
— (_i) — T /dTn .. .dm/(”(rn) e V(I)(71)|‘1’(I) (to))

n!
to

in the last part of this expression all integrals are carried out to the upper limit ¢; double
counting is compensated for by the factor 1/n!; in order to account for the fact that the
time—dependent operators V(" do not commute for different time arguments the time
ordering operator 7" has been introduced:; it orders time—dependent operators from the
right to the left with increasing time arguments, i.e., if t; > ¢y, T[VO(t,)VO(1y)] =
V(I)(tl)V(I)(tg);

this formal rearrangement enables us to write for the exact state vector in the interaction
representation

n t

win) =73 LTT (5 [ anv Ve | 0.

n=0 k=1 to

the summation on the right-hand side is formally identical to the expansion of the
exponential function

t
S(t,to) =T exp —%/dTV(I)(T)

to
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1.3 Golden Rule Rate Formula

the Golden Rule rate formula offers a simple way to determine the transition rate be-
tween different quantum states of some zeroth—order Hamiltonians in the presence of
a small coupling;

basic assumption is that the transitions are irreversible (transition into a macroscopic
number of final states);

mutual interferences among the final states and with the initial state preclude any re-
currence of probability back into the initial state;

recurrences are additionally suppressed when the coupling between the initial and final
states is sufficiently weak;

irreversible transition can also be found if a fast relaxation from the final state to further
additional states is possible; the final state itself may be discrete, but there is a coupling
to another continuum of states;

the rate of internal conversion (IC) between an excited electronic state ¢, and the elec-
tronic ground—state ¢, will be considered as an example;

electronic excitation energy is distributed among the different vibrational degrees of
freedom; since the radiation field does not take part in this type transition, it is also
called radiationless transition; often the internal conversion is slow compared to the
time scale of vibrational relaxation within an electronic state and therefore it can be
characterized by a transition rate; (for stronger nonadiabatic coupling one cannot as-
sume complete vibrational equilibrium for every step of the transition; if vibrational re-
laxation can be completely neglected a description in terms of wave functions becomes
possible)

the respective Hamiltonian in the electron vibrational state representation reads

Hic = Z ZEW\‘I/W Wl + Z ( epngr|Weu) (Wou| + H.c.)

a=e,g

1.3.1 Transition from a Single State into a Continuum

we consider quantum transitions between the single state |¥.,) into the continuum of
states |V, );

the related transfer of occupation probability can be characterized by looking at the
population of state |¥.,) (survival probability) which reads

Pey(t) = (Ve[ U (£)| Wey)

to get this quantity let us derive equations of motion for general matrix elements of the
time—evolution operator (transition amplitude)

Aap(t) = 0()(Va|U (1) W5)

the unit—step function (¢) has been introduced to restrict non—zero values of A,5(t) to
times larger than zero;
the equations of motion for the transition amplitudes read

0 .
i Aag = ih3()d0,p + > (Wl Hic|W,) A

~
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in order to solve this equation we introduce the Fourier transform of the transition am-
plitudes

Aag(w) = /dt €itha,3(t)

we obtain for the transition amplitudes the following equations

hwAas(w) = ihbas+ Y (Wal Hic|¥,) Ayp(w)

o

in particular for « = 3 = epu this gives

hWAemeu(W) =ih+ EeuAeu,eu(W) + Z @emgVAgl«eu(W)

the off-diagonal elements, A,, .,.(w), can be obtained from
hwAgyen(w) = Eg Agren(w) + OguepAepen(w)

note the restriction to the single vibrational state in the excited electronic state, i.e. we
set

Z @gu,enAe/i,eu(w> ~ @gu,e,uAe,u,eu(w>

in a more general frame this approximation corresponds to the case of a weak non—
adiabatic coupling (higher order contributions are neglected);

inserting the solution of this equation into the equation for A, ., yields a closed equa-
tion for this quantity which can be solved to give

-1
. @e v 2 .
Aeu,eu(w) =ih (hw — Eeu — Z #g‘—kzg + Z€>
v gv

here, ¢ has to be understood as a small and positive number which we will let go to
zero at the end of the calculation;

the contributions in the denominator of A, .,(w), which are proportional to the square
of the coupling matrix, result in a complicated frequency dependence of A, ., (w); one
effect is apparent: the coupling to the continuum shifts the energy E., of the initial state
to a new value; this shift, which is in general a complex quantity, is commonly called
self-energy

R
* ~ hw — By, + ic

the separation into a real and imaginary part gives

[Oepngr|”

Eeu(u}) = hAQe;L(W> — ihre#(w) = Z'])m
v gv

— T Z |Ocpugu|*0(hw — Ey,)

if the coupling matrix does not strongly depend on the vibrational quantum number v,
the variation of the self-energy in the region where w ~ E,, can be expected to be
rather weak; this means that the frequency dependence of A, .,(w) is dominated by
the resonance at iw = E.,; since this will give the major contribution to the inverse
Fourier transform we can approximately replace Aw in 3, (w) by E.,;

to carry out the inverse Fourier transformation we replace the quantity X.,(w) by the
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frequency—independent value X(E,,/h) and obtain the desired state population F,,,(t)
as

ih 2

dw _.
P, (t) = W —iwt — O(t —2T(Eep /Rt
ult) ‘ / 21w — (Bop + hAQ(E./h)) + ihT(Eep /1) (t) e

the integral has been calculated using the residue theorem of the theory of complex
functions; we may close the w—integral in the complex plane; to guarantee convergence
via exp —iwt and at positive time—arguments this has to be done in the lower half—plane

1 - ih
_ d —iwt
or | hw— (B, + hAQ(E,.,/h)) + ihT(E../h)

— L o) (—2mi) exp (= 1B, + BAQE,, /) — ATy /]t/h)

211

the absolute square of the expression gives the result already quoted above;

as expected the occupation probability of the initially occupied state |eu) decreases in
time due to transitions into the manifold of states |gv);

the rate of change of the survival probability is defined as

2
keu =2, = 7 Z ‘@6H79V|26<E6M - Egu)

this type of expression is known as the Golden Rule of quantum mechanics;

the delta function appearing in the rate expression can be interpreted as the energy
conservation law for the transition; only those transitions from |¥.,) to |¥,,) are possi-
ble for which the energy of the initial state £., matches some energy E,, of the final
states;

1.3.2 Transition Rate for a Thermal Ensemble

we consider an ensemble of N, independent but identical molecules (with a weak in-
tramolecular nonadiabatic coupling); in this case the initially prepared state |¥.,,) may
be different for each member of the ensemble;
all molecules are counted by the additional index m; the population P,..(t) gives
the probability the molecule m is in the particular electron—vibrational state; its time—
dependence follows as

Prne(t) = 0(t)e ™" Py, (0)

where P,,,(0) defines the probability to have molecule m initially in the particular
electron—vibrational state;

since different molecules are in different vibrational states it makes sense to introduce
the quantity

PmE(t) = Z Pmeu(t)

it gives the probability to have molecule m in the electronic state independent on the
actual vibrational state; it represents a reduced probability; often observables mea-
sured in the experiment are only determined by this quantity; in the following we will
focus on its computation;
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we assume that initially all molecules have been in the excited electronic state, then,

we get
Z Pme = mol

it is suitable, to introduce the probablllty Peu( ) to have the state |¥.,,) realized in the

ensemble
e,u Z Pmeu

mol

if we assume that the ensemble stays |n|t|aIIy in thermal equilibrium with some envi-
ronment at temperature 7' we can write

Pe,u(o) = feu
where we introduced the quantum statistical equilibrium distribution

exp(—FEe,/ksT)
>, exp(—Ee, /kgT)

to discuss this case where a finite coupling to the environment is present, two charac-
teristic times will be introduced; first, we have the time scale 7¢_g which characterizes
the coupling of the different members of the ensemble to the thermal reservoir; second,
the nonadiabatic coupling introduces a time scale given by 1/k.,,;

now we can distinguish the cases 75_g > 1/k., (slow thermalization compared to the
transition), 7s_r < 1/k,,, (fast thermalization), and 75_g ~ 1/k., (intermediate case);
Case 15_g > 1//€eui

we suppose that the interaction with an external field promotes the ensemble into the
state manifold {|¥.,,)}, where each state occurs N, times in the ensemble; since the
interaction with the environment is weak compared to the state coupling the population
will evolve according to

feu:

Z N exp —keut)

as stated above (absence of thermallzatlon on the time—scale of the transfer).

Case 1s_r < 1/k,:

thermalization proceeds at every time—step of the transfer; to derive the appropriate
equations typical for thermalization let us introduce the time—step At ~ 75_g; usually
we will be interested in the time evolution of the system on time scales much longer
than At such that we can consider At to be a continuous quantity on the time scale of
observation (coarse graining of the time axis);

at the initial time the population of the manifold {|¥.,,)} is thermalized; starting at ¢ = 0
we get for t = At

P (At) > (1 — ke, At) P, (0) = (1 — ke, At) fep

0) = fon

and obtain for the total electronic state population

PoAt) = 1= ke feuAt = Z kepfenPe

7

we note
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because we are using a course—grained time axis where the state population P, () is
thermalized within the time step At we can generalize this expression and obtain for

each t
P.(t + At) Z KepfonPs

since At has been assumed to be very small we can rewrite the expression for the total
population as

P.(t+At) = P.(t) 0

At ot

where we introduced the rate for transitions from a thermalized state manifold

27T
ke—>g = Z feuk:eu fe,u’@t?u 9V|2 ( ES]V)

2 BV

Ao Pe(t) = —keg Pe()

the strong coupling of the system of interest to a thermal reservoir leads to a thermal-
ization which is fast compared to the transfer, i.e., every step of probability transfer from
the manifold of initial states to the manifold of final states starts from a thermalized ini-
tial state population;

Case 15 g =~ 1/k,:

in this case one can no longer make a separation of time scales and the reasoning used
in the previous two cases breaks down; a more general description of the simultaneous
influence of the interstate coupling and the coupling to the reservoir is necessary; this
more general approach is offered by the density matrix theory;

1.3.3 Consideration of the Transition Rate
Principle of Detailed Balance

up to now our discussion has been concentrated on the transitions from the states |¥.,,)
(the initial states) to the states |V, ) (the final states); of course, one can consider also
the reverse process along the same line of arguments; we expect that the reverse rate
kq—. follows by interchanging E., with E , in the thermal distribution (transfer starts
from the thermalized distribution at the state manifold |V, ))

gae: ngu‘e)gueuP - )

we relate both rates to each other; noting the presence of the j)—function we may re-
place in k,_.. the distribution f,, by the new distribution

ex’ (—EEA/]CBT)
exp(—FE.,/ksT) Z,\: P

Jou = S exp(—Ep/koT) S exp(—Ege/ksT) | Jeu
this already gives
> exp(=Ee/ksT) > exp(—AEe/ksT)
A A
e > exp(— By /knT) s = by (= B = Bil/kT) Y exp(~AE,./ksT)

15



we introduced electronic reference energies FE, including the zero point energy of the
molecular vibrations according to

Eay = B, + AE,,

we further assume

> exp(—AEe/kpT) = Y exp(—AE,,/kpT)

and arrive at the detailed balance principle (AE = E, — E,)

kgﬂe — G*AE/RBT]C

e—g
in the case of IC, AE amounts values of 1 ... 3 eV; itis much larger than thermal energy
(at room temperature) and thus k,_.. ~ 0

Representation of the Rate by a Correlation Function

next we present an alternative notation which takes into account the structure of the
molecular states; to stay simple we neglect the operator character of ©,, and consider
it as a simple complex valued matrix element

661%91’ = <X€N|é69|xgu> = <X6H’ <<¢6HTnu0’¢g>] + Z Min@ﬁeupn‘(ﬁgﬂpn) |ng/>

~ Ocg(Xep| Xgv)
moreover, the j—function is replaced by a time integral; altogether results in

277"@3 |2 dt i _
by = 00 Y Lol o [ e B B
R

21h
|®eg‘2 tEBept/h —iEgut/h
= 7 dt Zfeu<Xeu’e e J |Xgl/><XgV’Xeu>
LV
_ 1O

- / dt trvib{ReeiHet/hefngt/h}

we used the definition of the trace with respect to the vibrational states

i} = D (Xeplow-[Xens)

7

and introduced the equilibrium statistical operator according to

<Xe,u|feu = <Xeu|Re
consequently it has the structure

. exp(—H./kuT)
“ tryp{exp(—H,/ksT)}
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Estimate of the Rate

finally we present an estimate of the rate for the case that only a single vibrational coor-
dinate defines the vibrational states (diatomic molecule, or only a single normal mode
vibration of a polyatomic molecules changes strongly upon electronic transitions); ac-
cording to the derivation of the rate formula this case of discrete final state energies
requires the introduction of additional decay processes of the electronic ground-state
vibrational states; it might be possible be introducing a finite life time 7 of these states;
the vibrational energies are written as

Eau = Ea + mvibu

the energy E, defines the electronic energy plus zero—point energy of the harmonic
vibrations; the respective vibrational energy quantum Aw,;, is considered to be identical
for both electronic states; moreover we take the approximation

@eu,gu ~ @eg <X6u |X9V>

and consider the zero—temperature case; then, the rate takes the form
27O y|?
k€—>g = Tg Z |<X€H‘Xgl/>’2 5(Ee - Eg - hwvibl/)
v=0

the formula indicates that strict coincidence of initial and final state energy of the tran-
sition is necessary; the divergent behavior indicates that for the present case no mean-
ingful rate can be defined;

we change to a é—function which has been broadened by the inverse life time of vibra-
tional states

/7T
(Ee — By — hwyipv)? + (1/7)?

I Ee — By — hwyv) — (1.2)

if E. = E, + hwipv this gives the rate as

27|04 |?
keg ~ Tg|<Xeu‘XgV>’2

it is mainly determined by the vibrational overlap expressions (x.,|xg.)

1.3.4 Rate Equations for Internal Conversion

if we account for the back transfer we have to set

0
aPE(t) = _k’e—nqpe(t) + k‘g—ng(t)

however, the single rate equation for P,(t) has to be completed by that for P,(t)
0

apg(t) = _kg—wpg(t) + keﬂgpe(t)

we obtained the Pauli Master Equations;

it is easy to find the solution of the above given coupled rate equations; because con-
servation of probability P.(t) + P,(t) = 1 holds, the two equations can be transformed
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to a single one for P.(t) — P,(t); taking as the initial condition P.(0) = 1 the solutions
read (note K = kc_.y + kg—..)
1

P.(t) = I (k‘le—nqe_m + kg—>6>

Py = B (1 o)

It is instructive to put both solutions (a = g, €) into the form
P,(t) = P,(c0) + (Pa(O) — Pa(oo))e_Kt )

with P.(c0) = k,—../K and P,(c0) = k._.,/ K;
as it has to be expected the result indicates a complete depletion of the initial state if
there is no back-transfer (k,_.. = 0); otherwise both manifolds remain populated,

a generalization of the Pauli Master Equation to a larger set of different states is
straightforward; to obtain a general solution of the related rate equations we denote
the right-hand side as — ), K.,/ with the general rate—matrix K,, = du Zc#a kooe
—(1 — dap)kp—q; given the eigenvalues «(n) and (normalized) eigenvectors e, (n) of K,
the general solution for the population of state |a) reads as (n counts the rate—matrix
eigenvalues)
Pu(t) = 3 e(n)ea(n) exp(—r(n)t)
n

the additional factors ¢(n) are determined from the initial conditions; the decay of the
various populations is multi-exponential; since the smallest x(n) equals zero the re-
spective term in P,(t) fixes P,(c0); it is obvious that the given solution (except some
special examples) can be only achieved by numerical computations;
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