Journal of the Chinese Chemical Society, 2000, 47, 807-819 807

Anharmonic Oscillator Approach to the Exciton-Exciton Annihilation
Dynamics in Molecular Aggregates

T. Renger®, V. May®, V. Sundstrém® and O. Kithn®*
*California Institute of Techrology, Caltech 127-72, Pasadena, CA 91125, USA
Y ustitut fiir Physik, Humboldt University Berlin, Hausvogteiplatz 5-7,
10117 Berlin, Germany
“Chemical Physics, Lund University, P.O. Box 124, 22100 Lund, Sweden
Unstitut fiir Chemie, Physikalische und Theoretische Chemie, Freie Universitit Berlin, Takustr. 3,
14195 Berlin, Germany

The dynamics of Frenkel excitons in aggregates of coupled elecironic three-level molecules in the pres-
ence of strong external fields is investigated. Particular emphasis is paid to the microscopic inclusion of
exciton-exciton annihilation. It appears as a combination of exciton fusion and internal conversion processes
which are taken into account within perturbation theory. The influence of an environment on the exciton dy-
namics is treated by means of stochastic fluctuations of the electronic transition energies.A closed set of
equations of motion is derived and it is shown how nonlinear optical spectra can be caleulated non-

perturbatively.

L INTRODUCTION

During the last decades the study of the electronic prop-
erties of such distinct systems like organic semiconductors,
polymers strands, dye aggregates and biological chromophore
complexes made the Frenkel exciton model a common con-
cept in condensed matter physics.)'? A prominent exam-
ple for Frenkel excitons can be found in the chlorophyll-
protein complexes of photosynthetic light-harvesting anten-
nae (LHAs).>* Besides the outstanding importance of photo-
synthesis, it was the determination of atomic-scale resolution
structures for several antenna complexes which attracted the
interest of a more physico-chemical oriented research.®—5
Meanwhile all ultrafast spectroscopic techniques have been
applied to investigate the energy and charge transfer dy-
namics in photosynthetic pigment-protein complexes;* the
interpretation of these experiments in tumn stimulated the
development of the standard Frenkel exciton theory.3®

Two aspects characterize the activities in the field of
photosynthetic antenna systems. First, there is the general
point of guiding biologists and biophysicists in their attempt
to reveal the basics of life. Second, pigment-protein com-
plexes can be viewed as any other physical system, i.e., they
represent a particular type of molecular nanostructures, In
this spirit experiments are often carried out under conditions
far away from being physiological. For example, every non-
linear optical experiment on LHAs includes transitions into

electronic states which are of no importance for the func-
tionality of the antennae. Nevertheless, by means of these
techniques one gets access to relaxation rates and energy lev-
els which are of central importance for the excitation energy
transfer. Furthermore, one is able to clarify the influence
of the ubiquitous static and dynamic disorder introduced by
the protein environment. Finally, increasing the light inten-
sities it becomes possible to distinguish between different
relaxation channels,

In the case of high intensity excitation the dynamics of
Frenkel excitons is influenced by exciton-exciton annihila-
tion (EEA). This can be considered as a two step process
(cf. Fig. 1): First, the mutual Coulomb interaction between
two excitons leads to an excitation of one molecule into a
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Fig. 1. Exciton-exciton annihilation in coupled electronic
three level systems. The dipole-dipole interaction
between two Sy excitons leads to a double ex-
citation of one three level molecule: (A) -+ (B).
Internal conversion causes a de-excitation (B) and
a single exciten is annihilated (C).
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higher excited state, the other molecule gets de-excited. In
the second step the highly excited state relaxes back to the
original state via internal conversion. As a result a single
exciton has been annihilated and heat is released into the
local environment.

The investigation of EEA has a long history in partic-
ular in the context of molecular crystals. The appropriate
theoretical frame has been provided by Suna® and later by
Kenkre.”® In Ref. 6 it was shown that the classical contin-
uum model leading to the kinetic equation

W = _'Yanni[n(r; t)]2

{1.1)
for the exciton density n(r;t) results from a low density
limit of a hierarchy of equations for a set of many-particle
distribution functions. In particular an expression for the
phenomenological bimolecular annihilation rate v,nn; could
be derived. Moreover, Ref. 6 contains a quantum statisti-
cal formulation of exciton hopping based on multi-exciton
density matrices. This approach reveals that Eq. 1.1 results
from a certain type of mean field approximation. Simi-
lar conclusions have been reached in Ref. 7 where also a
Generalized Master Equation description of exciton transfer
and EEA incorporating spatial coherences on the lattice was
given. The latter effect was shown to influence quantum
yields and fluorescence intensity.

EEA has also been studied in dye aggrepates®~12 and
photosynthetic complexes. In photosynthesis research it was
appreciated early that measuring the fluorescence decay and
quantum yields versus pulse intensity can provide valuable
information on exciton migration within a so-called domain,
that is, a connected assembly of photosynthetic units each
consisting of LHAs as well as reaction centers. These do-
mains are for many photosynthetic systems rather planar
with 40 to 400 LHAs per reaction center.!? A phenomeno-
logical Master Equation describing the kinetics of the num-
ber of excitations in a domain under annihilation and uni-
molecular loss conditions was given by Paillotin et al.'4
From an analytical solution of the Master Equation by means
of the generating function approach it was shown that the
fluorescence yield versus intensity curve contains informa-
tion on the number of connected units in the domain. This
approach was later extended by Den Hollander et al.'% to
include the different states {open/closed) of the reaction cen-
ter. Further, the phenomenclogical rates were given a mi-
croscopic explanation using a random walk model (for an
application see Ref. 16). The early work on EEA in LHAs
has been sumumarized in Ref. 17.

More recent studies on energy migration and trapping
include the modeling of structural and spectrally inhomo-
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geneous situations given in Ref. 18 and the extension of
the Suna model to include higher excited intramolecular

electronic states, trapping, and the excitation process.’® On

the experimental side it has been demonstrated that singlet-

singlet and singlet-triplet annihilation can be discriminated

upon changing the pulse repetition rate {see, e.g., Ref. 20).

Combined with phenomenological theories this allowed study,
for instance, of the connectivity of chloroplasts,? or energy

migration in photosynthetic bacteria; the latter revealed a

percolation like nature of the dynamics.?® Further, pump-

probe spectroscopy has been used to elucidate the effect of
local heating due to EEA in the so-called FMO complex,2?

to study the interplay between exciton relaxation and EEA in
the strongly coupled peripheral LHA of Rps. acidophila,??

and to investigate spectral redistribution in the LHC-II of
green plants.?

Concluding this overview we would like to stress that
from the theoretical point of view the modeling of energy
migration in LHAs has been restricted to phenomenological
Master Equations. It was only recently that a more elabo-
rate theory has been formulated and applied to a dimer model
of the LHC-II of green plants.?2¢ The approach had been
based on a density matrix formulation in terms of multi-
exciton vibrational states. EEA followed as a radiationless
transition process among different exciton manifolds. The
multi-exciton vibrational representation has been motivated
by the fact that the intermediate strength of excitonic cou-
pling and dephasing introduced by the protein environment
in LHAs makes it necessary to treat them on the same foot-
ing. An exact inclusion of both interactions is hardly possi-
ble beyond the dimer model of Refs. 25,26, However, the
mutual Coulomb interaction has to compete not only with
the dynamic exciton-vibrational coupling but also with static
disorder. The latter will localize the excitonic wave function
on a few pigments and a perﬁxrbation theory with respect to
both the dynamic disorder and the Coulomb interaction be-
comes possible,

A convenient tcol for dealing with this situation is given
by the anharmonic excitonic oscillator approach,?”—3! which
is an alternative to the standard Frenkel exciton description.
The minimum model for a microscopic description of EEA
would inciude three intramolecular electronic states (we treat
only singlet-singlet EEA here). In Ref. 27 it was shown that
the dynamics of a system of coupled three-level molecules
can be mapped onto a set of coupled anharmonic excitonic
oscillators. By construction this model is well suited to de-
scribe the nonlinear optical properties of large aggregates.
This was shown for the third-order response function in
Refs. 27, 28. However, as pointed out in Refs. 25, 26 the
description of EEA under intense field conditions requires
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going beyond a third order perturbation expansion, i.e., to
use an approach which allows in principle a nonperturbative
inclusion of the external field interaction.

In the following we will use the anharmonic oscillator
model to give a closed expression for the nonlinear optical
polarization of large molecular aggregates. This includes
a microscopic model for the internal conversion leading to
EEA, the exciton transfer, the exciton-vibrational interac-
tion, as well as a nonperturbative treatment of the external
field. In Section II we briefly summarize the concept of
the anharmonic exciton oscillator representation and define
our model Hamiltonian. In Section III the equations of mo-
tion for the different dynamic variables are derived starting
from the Heisenberg equation for the related quantum oper-
ators. Appropriate factorizations of expectation values are
discussed together with the perturbation theory which is used
to treat the excitonic interactions as well as the coupling to
the nuclear degrees of freedom. The connection with non-
linear ultrafast experiments is established in Section IV. The
paper is summarized in Section V.

II. AGGREGATE HAMILTONIAN IN ANHARMONIC
OSCILLATOR REPRESENTATION

A. Exciton Hamiltonian

In the following we will be concerned with aggregates
made of Ny, molecules each having three electronic states
Sa, St, and Sy, denoted by f = 0,1, 2, respectively. This
situation is commonly described on the basis of the Frenkel
exciton Hamiltonian'»?

Hfrenkel = z E-Slf)b:[l

fbnf + Z ﬂmndmdn (21)
n,f=(1,2) mn

The Frenkel exciton creation and annihilation operators bL ;
and b, s, respectively, obey Pauli-commutation relations [by,f,
Bl )] = Ounebygr (1 -~ 26} tby). They are defined via the
Frenkel exciton state vectors |f,), where the index f,, =
(0,1, 2) counts the three possible states of the n-th molecule
according to: b, = [1,)(0n} and b], = |2,)(1,.]-

In what follows we assume that only the Sp — $; and
the S; — Sy transitions have finite matrix elements of the
transition dipole moment, ,u,(.,m) and ,u,(,.m. Thus the molec-
ular dipole operator dy, = dy&, is given by

dy = GO [(b]; + b1} + £ (blg + Baz)] 22)

Here, we introduced the ratio between the dipole matrix
elements as

(21) 7,,(10)

i = 20 [l 23)
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and &, is the unit vector pointing along the dipole vector dn
(For simplicity we take both transition dipoles to have the
same orientation.). The molecules are assumed to interact
via dipole-dipole forces; the matrix /., in Eq. 2.1 con-
tains the orientations of the So — S; transition dipoles of
molecules m and n, and is proportional to the third power
of the inverse distance between the center of masses of the
two molecules:

- =
€mfn

Bmn =

('ané‘m ) (angn)
Tonn

o (2.4)
Here, Fmy, is the distance vector between the mth and the
nth molecule.

In Ref. 27 it was shown that the nonlinear optical prop-
erties of this kind of molecular system are conveniently de-
scribed in terms of the anharmonic oscillator picture (see
also Ref. 32). This approach is based on the observation
that upon introduction of oscillator creation and annihilation
operators according to the general prescription

-1 (f+1.6)

Bl =3 Bl + 1)(5l

f=0 H#=

(2.3)

(here, f = 0...F — 1 counts the intramolecular electronic
states, i.e., F' = 3 in the present case) the dipole operator
takes the simple form

dy = & pin(Bn + BY) (2.6)

(note that “%10) = ptn, will be used for brevity). The new

operators satisfy the commutation relations

F-1
(B, BY) = bmn (1= S (B (BA))
f=0

2.7

By construction the dipole-dipole interaction term in Eq.
2.1 has a simple form while for the on-site contribution the
following ansatz is made

1
2B, jbor = 3 AP (BY (Bu)
n,f nf 7

(2.8)

Egs. 2.7 and 2.8 contain the yet unknown parameters qﬁ,‘: )

and Y. In Ref. 27 it was shown that these parameters can
be determined from the requirement that the matrix elements
of the on-site Hamiltonian and the commutation relations
are identical in the Frenkel and the oscillator picture. This
results in recursion relations from which one obtains for the
present case of three level systems qg) =282, qn’ =
(k2 -t —1)/c2, B = ED, and QP = 2B /x2 -



810 /. Chin. Chem. Soc., Vol. 47, No. 44, 2000

2) Ey
An
p_(21) ~
n ————- ‘Q'n ”'nKn
{1)
o En 4
10
“(n } Qn un
|0)

Fig. 2. Mapping of the Frenkel exciton states (left) onto
the anharmonic excitonic oscillator states (right).
Note that E,(f) is chosen to be zero.

Er(,l)). Collecting the different terms the Frenke! exciton
Hamiltonian Eq. 2.1 transforms into

Hoo= 3 |B.BLB, + 2(B)X(B,)]
+ 3 mnBlBn + cc] @9
mn
Here we introduced the matrix elements of the dipole-dipole
interaction as Jy, = Bpnfintty,. The parameter g,, is re-
lated to the anharmonicity of the n-th oscillator, hA, =
B —2ED, through hA, = 2g,/2+ (<2 —2)ED. The
mapping procedure is illustrated in Fig. 2. In the following
we will use the notation 2,, = QS) and flﬂ = Qﬁf) - Q,(%l).
The various limits of the oscillator model, in particular the
two-level limit, x,, = 0, and the harmonic oscillator limit
for which x, = /2 and A, = 0 have been discussed
previously.2728

B. Internal Conversion

Exciton-exciton annihilation is a consequence of the break-
down of the Born-Oppenheimer approximation, i.e., the adi-
abatic separation of electronic and nuclear motions.? If two
excitons are in the 8, -state at different sites, J,,,,, includes a
resonant interaction process which leads to the de-excitation
of the m-~th molecule and the simultaneous excitation of the
n-th molecule into its Sp-state. This situation is shown in
Fig. 1. Owing to the nonadiabatic coupling between the S~
and §)-states, internal conversion will occur as indicated in
panel (B} of Fig. 1. This is usually a rather fast process
(sce also Ref. 33). The overall outcome is the annihilation
of one exciton as shown in Fig. 1(C).

In the escillator picture we can incorporate internal con-
version by adding the following term to the Hamiltonian
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Eq. 2.9

Hic =Y VYU (R)[BI(B,)? + h.c] (2.10)
n

Here, VUCXR) is an operator defined with respect to the

particular set of nuclear degrees of freedom, R = {R},

which is responsible for the internal conversion process.

Note that in terms of the Frenkel exciton states Eq. 2.11

corresponds to

Hic =Y VI R)ka[|1,)(20] + hoc] (2.11)
T

In passing we mention that in principle exciton-exciton an-

nihilation is not restricted to a three level scheme. Different

exciton processes involving higher excited Sy -states can be

straightforwardly incorporated (see also Ref. 19).

C. Exciton-Vibrational Coupling

Exciton-vibrational interaction plays a fundamental role
for the dynamics of many aggregates. It is of particular
relevance for the energy transfer in photosynthetic antenna
complexes where it provides the means for releasing ex-
cess energy thus facilitating energy funneling to the reaction
center. There exist different approaches to the inclusion of
exciton-vibrational coupling which have been reviewed in
Refs. 3,5. Here we adopt a stochastic model (see also Ref.
34) assuming that the on-site electronic transition energies
are subject to some fluctuations. Specifically, we will use
the Hamiltonian

Hexovib = 3 0En(t) (B} Bn + an(B})*(B.)?)  (2.12)

For simplicity we have assumed that the S, — S, transition
is governed by the same fluctuation § E, (¢) as the §; — Sy
transition. Only the magnitude is scaled by some factor ~,,
which, introduced in the Frenkel picture, is related to the
o in Bq. 2.12 via a, = (1, — #2)/x2.

Next we have to specify the characteristics of the stochas-
tic fluctations 6 E,,(t). In the context of the stochastic Liou-
ville equation the so-called Haken-Strobl-Reineker param-
eterization for the correlation functions of §E,(t) is fre-
quently applied.?® Here the modulation of the electronic en-
ergies is described in terms of a Gaussian-Markovian process
which is strictly valid only in the high-temperature limit, An
extension to finite temperatures was given by Cépek and co-
workers, %6

Below we will use the model of dichotomic noise which
has been used in Ref. 37, as an example. As usual the
first moment of the fluctuation is set to zero, (4 E,,(t)) = 0,
while for the second moment we have

(6Eﬂ (t)aEm(t’)) = 6mnh2772 exP{_(t - t’)/TCOT} (2.13)
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Here, the fluctuations of different sites have been assumed
to be independent; the amplitude # is not dependent on the
site index. Also the correlation time T, is the same for all
pigments. Finally we point cut that the dichotomic process
switches randomly between the values +hn and —Fkn, ie.,
it holds for ary time ¢ the important relation (§F5,(t))? =
h2n?.

D. Interaction with the External Field and Optical
Polarization
One of the main reasons for introducing the excitonic os-
cillator representation was the simple form which is obtained
for the molecular dipole operator, Eq. 2.6. This results in
the following semiclassical expression for the interaction be-
tween the aggregate and the external field

Hiaa(t) = - > E(t)pnBl +hec. (2.14)
n

Note that we skip the vector notation for the external field
as well as for the transition dipoles for brevity. This im-
plies that all dipoles are oriented parallel as is the case, for
instance, in some linear aggregates. However, an extension
of the cbtained results to the case of non-parallel dipoles
at different sites is straightforward and requires the imple-
mentation of an orientational average for the calculation of
nonlinear optical spectra.*® Concerning the (classical) exter-
nal field one is usually interested in setups where a sequence
of pulses interact with the sample, ie.,

E(t) =Y &, (e it 4o,

J

(2.15)

Here &,,(t) is the pulse envelope while w; and k; de-
note the carrier frequency and the wave vector, respectively
(cf. Ref. 32). Throughout this paper we will apply the
rotating wave approximation to the system-field coupling,
ie, from Eq. 2.14 only those terms for which an ex-
citation of the system goes together with an energy loss
of the external field and vice versa are considered (i.e.,
Hield  E,, (8)Ble™@it~7) + he).

All information about the response of the sample to for
example, a strong pump pulse, is contained in the expecta-
tion value of the polarization. Within the excitonic oscillator
representation the polarization operator is defined as?*-28
P(t) =) pn[BL(t) + Ba(t)] (2.16)

n
Here, the time dependence of the exciton operator is in the
Heisenberg representation. Calculation of the expectation
value of Eq. 2.16 thus requires the solution of the Heisen-
berg equations of motion for the operator B, (or Bl). As
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we will see in the following section this invelves in principle
the solution of an infinite hierarchy of equations. Our main
objective therefore will be the derivation of a closed set of
equations of motion which allows the determination of the
polarization.

III. EQUATIONS OF MOTION

A. General

The calculation of the nonlinear optical response accord-
ing to Eq. 2.16 requires establishing equations of motion for
the oscillator operator B, i.e., we need to obtain a closed
expression for

dB. i
dtn = _E[-BTnHex + Hﬁeld(t) + H]C + Hex—vib]
_dB,| | dB, dB,| . dB,
dt ex dt field di IC di ex—vib

(3.1)

Let us first consider the free evolution of the electronic sys-
tem. In order to simplify the notation we will assume for the
following that the ratio (Eq. 2.3) of the §; — Sy and the
So — S dipole moment is independent of the site index,
ie., we take K, = &, q,(f) =, and q(ﬂz) = ¢3. Further we

will substitute +,, = 7. We then have
dB,
dt

= 2 3 (G2 + e By
k

—{q1Jnt — Ok BAL)BL B, By, 3.2)

+q2Jnk(B;)2B,%Bk]

Eq. 3.2 already indicates the challenges one faces with
the equation of motion approach. The right-hand side cou-
ples the time evolution of the one-exciton oscillator variable
B, to other variables like BiB,B, and (B!)*(B,)?Bx.
The accumulation of oscillator variables continues if we look
at the field dependent contribution to Eq. 3.1 which reads

dB, i
| = EWun [t - a1 BLBn + (B (Bn)?]
field
(3.3)

Thus the field drives the one-exciton polarization by acting
on the ground state but also on the populations of the one-
and two-exciton oscillator states. The respective population
operators enter as new variables. For the internal conversion
contribution to Eq. 3.1 we get

dBn|
dt ;o

_iyuoyg [(Bn)2 +x2BB,
k (3.4)
~(1+ K2)(BL)*(B,)?]
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i.e., the internal conversion connects not only the one-exciton
polarization variable B,, to the population variables of the
one- and two-exciton oscillator states but also introduces the
two-exciton variable (B, )2.

Finally, we give the confribution due to the exciton-
vibrational interaction. It reads

dB, U

R X PR

ex—vib

(3.5)

and does not introduce new excitonic variables.

As an additional complication in the equations of mo-
tion (3.4) new operator products appear which contain the
nuclear degrees of freedom (so-called vibrational assisted
operators); for example, we have VI®)(R)(B,)? for which
a separate equation of motion exists. Further, in Eq. 3.5
the stochastic process enters, for example, in the product
0 En(t) B, whose evaluation requires solving an additional
equation of motion. Below we will show how the effects of
internal conversion and exciton-vibrational coupling can be
incorporated into respective relaxation and dephasing rates.
Since these dissipative processes basically affect the coher-
ences between different oscillator variables it is reasonable
to assume that upon taking the expectation value of oper-
ator products not all types of coherences between different
molecular sites have to be accounted for. In fact there are
various approximation schemes for factorization of operator
product expectation values which are suited to describe the
spectroscopy of different physical processes (for a discussion
see Refs. 29,32).

As has been pointed out in several places?728:32 the dif-
ferent operator products can be classified according to the
order of the external field they correspond to, ie., a product
like (B})*(By)" is of order a+b in the field. In the follow-
ing we are interested in calculating the nonlinear optical po-
larization for rather strong pump fields, i.e., the above type
of classification is not appropriate. The alternative which
we provide is based on the assumption of weak inter-site
dipole-dipole interaction and strong dephasing due to the
exciton-vibrational interaction introduced via the stochas-
tic fluctuations of electronic energies. Under these condi-
tions the expectation values can be factorized into products
of dynamical variables at different sites. This results in a
Master Equation for the on-site excitonic variables which is
exact in second order with respect to the dipole-dipole in-
teraction. Coherences between different sites which are of
higher than second order in the dipole-dipole interaction will
be neglected. Tt should be noted, however, that the present
treatment goes beyond the standard description of EEA and
exciton transfer for it takes into account all on-site coher-
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ences created by the external field. Inspecting Eqs. 3.2-3.5
we notice that this requires calculating the quantities {B,,),
{(Bn)®), (BL(Bn)*), (BLBn) and {(B})(B,)?), where
the brackets indicate two averaging procedures, one stochas-
tical and one quantum statistical.

B. Internal Conversion
Since our focus is on the process of EEA we start with
a detailed derivation of the internal conversion contribution
to Eq. 3.1. According to Eq. 3.4 the dynamics of the po-
larization variable B,, is coupled to operators which contain
the nuclear degrees of freedom via VIC)H(R). Let A, be
the electronic part of these operator products. Qur aim is to
obtain an expression for (VUC)(R) A, )(t) by using pertur-
bation theory. In lowest order with respect to V{IC)(R) we
get
;

(VIR An)(t) =5 fo ot Hig(t - t')

t (4} 17(IC)
Ug (1) VIO (R} AnUo(t) (3.6)

.ot

i f a U3 (VIO (R)
R Jo

Aot Hiot — #)

Here, the time evoluticn operator Uy(t) contains the elec-
tronic Hamiltonian H,, and the vibrational Hamiltonian
H,in(R) which is not further specified. In the above expres-
sion Hic(t) has been formulated in the interaction picture,
ie., it reads

Hic(t) = VUO(R; 1) Bl (B,)?exp{—iflat} + h.c. (3.7)

where the time dependence of the operator VUIC)(R; 1) is
due to the free evolution with respect to H.in(R). Hence it
follows that

—2VIOR)A, = 2(@n) BY(B.P 4
+73 (@) (B})? BaAn
—74+(Qn) 4, BL(B,)?
~7- (@) An(BL)*B.

Here, the Markov approximation has been introduced, i.e.,
the correlation function of the vibrational degrees of free-
dom is assumed to decay fast compared to the dissipative
dynamics of the system. In this limit the half-sided Fourier
transforms of the correlation function of the vibrational de-
grees of freedom,

(3.8)

1 [ ;
1) = g5 [ dtet VIO R gV R, 0))
3.9
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enter the equation of motion. In the following these damp-
ing functions will be considered as real quantities, i.e., a
renormalization of the electrenic energies by the internal
conversion processes will be neglected. The functions v,
(v-) are the internal conversion rates for downward (up-
ward) non-radiative transitions between the second and the
first excited oscillator electronic state. The ratio of upward
and downward rates fulfills detailed balance, i.¢., for reason-
able temperatures the upward rate can be neglected. Hence
we will set y_ =5 0 in the following,

At this peint we introduce a secular approximation which
can be justified as follows: Consider the case A, = B, in
Eq. 3.8. Inserting this expression into Eq. 3.4 gives contri-
butions like (B})? (B,)? etc. Now the free time evolution
of By, will contain a factor exp(—if2,t) while we have a
constant contribution from (B} }?(B,)? (which, however,
will give rise to an oscillating integrand in the solution for
B,). In the spirit of a coarse graining of the time axis the lat-
ter term can be neglected and only those terms on the right-
hand side of Eq. 3.4 which also oscillate as exp(—if),t)
need to be considered. Neglecting all so-called non-secular
terms we have

d{B.,)
dt

= “527-& (Qn) (BL (Bn)z)
IC

(3.10)

For the remaining exciton variables of interest we cbtain
using Eq. 3.8 together with the secular approximation

KOS (@B @10
dt Ic

HBUB o (@, )BL (B (3.12)

dt I

dBLBA)| —2(% = D)4 (Qn)(BL*(Bn)?) (3.13)
dt 1

and

KB BSY | gy, @)BLHBLYY (3.14)

di Ic

C. Exciton-Vibrational Coupling

In Section IIC the model of stochastic dichotomic noise
for the description of the dynamical fluctuations of the en-
vironment has been introduced. This resulted in Eq. 3.5
which we will discuss in more detail now. According to the
theorem of Shapiro and Loginow®® the equation of motion
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for the stochastic average of a product of type 6E,,(¢) B,
reads in the Heisenberg representation

S Bu(Ba(t) = 1 (OEn(t) Balt)
dt ) (3.15)
HOE () 2 Ba (1)

Here 7o, is the correlation time of the stochastic process in-
troduced in Eq. 2.13. Using the property (6E,,(t))? = h2n?
and Eq. 2.13 (neglect of site-site correlations) the system
of differential Egs. 3.15 can be closed and no higher cor-
relation functions of the fluctuation term are generated. In
principle the model of dichotomic noise allows inclusion of
non-Markovian effects into the dynamics, i.e., arbitrary cor-
relation times 7.o,. For simplicity we will assume for the
following that Teor <€ Teystern WheEre Toyger is some char-
acteristic time of the system dynamics. Thus a perturbative
treatment of the noise within the Markov limit becomes pos-
sible. To this end we write down the equation of motion for
(0E,By)(t) = (0E,(t)B,(t)) using Eq. 3.15,

BB = ~iQn — i1k (6 BB} (1)

i A {6 En BL(Bn)2) (1)

—n*((Bn)(t) + (v — 2)(BL(Ba)*)(1))
(3.16)

Here we have neglected the influence of the external field,
the Coulomb interaction and the internal conversion pro-
cesses (so-called cross terms). The formal solution of Eq.
3.16 reads

t
(EEan)(t) — _z/ dr e—i(ﬂ..—ir;:)t'
0

(Ani6E.BUB)E —t)
1P (Ba)(t = 1)

+(7 = 2/(BL(B (- ).

G117

Next we evaluate (§E,B(B,)?){t) along the same lines
which gives

t . ot
(8EnBL(Bn)2)(t) = —i / dt e~ Gn—ir e
0

(v = 1){BL(B)*)(t — t)
(3.18)

Using the Markov approximation we can shift the upper
integration limit to infinity and replace the time argument
t — t' by ¢ by taking into account the free evolution in
terms of the site energies (the diagonal term of H.,), i.e.,
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Bl(B.)%(t — ') = &%t B} (B,,)2(¢). Such a replacement
is justified if the system dynamics is dominated by the di-
agonal term of H, on the time scale of the correlation time
of the bath degrees of freedom, i.e., we assume an ultrashort
correlation time of the bath. This gives

—iﬂzchr(W - 1)<Bl (Bn)z)(t)
(3.19)

(OEnBL(Ba))(t) =

Applying this result to Eq. 3.17 gives in the limit where

Tost 3 Ap = Q0 — 2, i.e., assuming a small detuning of
the Syy-state
(6EnBn)(t) = _'inzTcor“Bn)(t) +(v - 2)(BL(Bn)2)(t))

(3.20)

Inserting the abeve two expressions into Eq. 3.5 we finally
obtain the following dephasing contribution

d

k d._t<Bn>

= —T[(Ba) +1v - (BB
3.21)

ex—-vib
where the dephasing rate constant I is given in terms of the
amplitude and correlation time of the stochastic noise as

I = 7*Teor (3.22)

In complete analogy we get for the remaining dephasing
terms

SBUBYY = Ta-0EYBY G2
ex—vib
and for the two-exciton variable
d
—{(Bn)?) = ~Ty}{((Bx)?) (3.24)
ex—vib

The relaxation dynamics of the population variables for the
first and second excited oscillator state B} B, and (BI)?
(Bn)?, respectively, is intimately connected to the popula-
tion transfer between different sites.>33 Therefore they will
be treated separately in the following section.

D. Exciton Transfer

Exciton transfer initiated by the dipole-dipole interaction
(Jmn) will be treated within the second otder of perturbation
theory.3* In particular this implies that the dephasing of the
site-site coherences due to the stochastic fluctuations of the
site energies is rapid as compared to typical transfer times.
This aflows us to derive a closed set of equations of motion
for the on-site exciton variables employing a certain factor-
ization scheme for the stochastical and quantum statistical
expectation values. This is illustrated for the occupation
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variable of the higher excited state in the following, whose
equation of motion is found as

d
BB

ex

2
= >Im ; Jenk?{(B})2B, By,
(3.25)

To obtain a transfer rate a separate equation of motion for
the operator ((B})2B,,By) on the right-hand side has to be
solved. This can be achieved by formal integration and the
restriction to first order in the dipele-dipole coupling, Fur-
ther, the stochastic exciton-vibrational coupling is included
in the second order. The details of the calculation are given
in Appendix A. Here we only quote the result:

T
L (BLHBY = thﬂJnuh—W
x[{(BDX(Ba))(1 + (262 — 1)(BL By
+a2((B])*(Bo)%)
~#%(BLBy)(BLB,)]
(3.26)

where the broadening parameter is determined as ' = I(1+
(v—1)?). In deriving Bq. 3.26 we assumed that the detuning
of the higher excited state A, is small compared to the
dephasing rate T". Therefore, in the Lorentzian prefactor €2,
does not appear. Note, however, that the effect of different
transition frequencies due to static disorder, for instance, is
fully included, i.e., we can have {3 — 2, > I.

In complete analogy the exciton transfer contribution to
the equation of metion for (B} B,.) is cbtained as

d
if —(B1B,)

=(1-2x72) (i <(BL)2(Bn)2>Jex)

+ SRl g
><([(B,*,Bn)(l +ax((BD(Br)?)]
~{k e n))

ex

(3.27)

Note that from Eqs. 3.26 and 3.27 we can derive the equa-
tion of motion for the electronic state populations; details
are given in Appendix B.

To complete the second order treatment of the dipole-
dipole coupling we need in principle equations of motion for
the operator products corresponding to polarization terms,
ie, (Byn), ((Ba)?), and (B%(B,)?). These equations lead
to a transfer of coherences between different sites. However,
coherence transfer has to compete with the intra-site dephas-
ing of coherences described by Eqs. 3.21, 3.23 and 3.24 and
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characterized by the rate constant T’ (Eq. 3.22). One finds
in complete analogy to Eqs. 3.26 and 3.27 that the coher-
ence transfer scales with the rate constant |J,,, /A2 /T. As-
suming strong intra-site dephasing and weak dipole-dipole
coupling, i.e., T2 > |Jnk/h)?, coherence transfer can be
neglected. Note that there is no influence of the exciton-
vibrational coupling on the ievel populations. This justifies
to take into account the influence of the dipole-dipole inter-
action on the level populations but neglect it for the transfer
of coherences. For stronger dipole-dipole coupling the lat-
ter may contribute as well. However, in this case a more
sophisticated factorization scheme than applied here would
be necessary (see, e.g., Refs. 29,32,40),

IV. CALCULATION OF NONLINEAR QPTICAL
SIGNALS

In the following we will show how to incorporate the
interaction with the external field into the equations of mo-
tion derived so far. This will put us into the position to
calculate nonlinear optical spectra taking into account the
effect of intense pump fields which are known to provide
information about EEA. For strong pump fields a perturba-
tion expansion with respect to the field strength is no longer
feasible and a nonperturbative theory is required. For this
purpose it is necessary keep track of the phase of the polar-
ization, ie., to distinguish the different propagation direc-
tions of the nonlinear polarization wave in the sample. This
is conveniently done using an expansion of excitonic oscil-
lator expectation values with respect to the carrier waves of
the external fields26-27-41

oC
(BLS(Ba))y = Y
n!‘ngzvoo
e Tacta n,(k,r—wst)gir;lgnz)(m’ n;t)

4.1

Here, we assumed two external fields with wave vectors k;
and k3. The equation of motion for the expansion coeffi-
cients then reads

; g’lhﬂz)(m n: t) -"[dsre i3, l2ﬂ,(k_,r—u.l,i:)
£
d

4 (BLI(B)Y)
+i Zwsac(;“"’)(m, n;t)
) (4.2)

Introducing the expansion 4.1 does not alter the equations
of motion derived in Section III. The contributions due to
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internal conversion, exciton-vibrational coupling and exci-
ton motion leave the indices n; and ny unchanged. The
field-dependent contribution to the right-hand side in Eq.3.1,
however, mixes different expansion coefficients as will be
shown subsequently. Since the interaction Hamiltonian 2.14
is diagonal in the site index we will drop this index for
brevity. The external field contributions for the related ex-
pansion coefficients of the exciton variables discussed in
Section IIT are obtained as

=Y En

field s=1,2

(‘5%,1 Qo™ 4 gyoT

ih ;to(()ffl mz)

1,715))

(4.3)
where 5 = 1(2) if s = 2(1),
in & gimina) =y 3 g
dt field h s=1,2 :
((52 + 1)0’%23—1’"5) +520L(‘1;-.,—1,na))
(4.4)
d n ;
zhd (711 2) _'ENZ
field 5=1,2
{8* t)a_(na+1 ne) t)( ns—l ng)
(1 + n2)aég"_1’"5))}
(4.5)
d (n1,m2) 2
—oq = =i Im
dt ! field b 3:21,2
* e t1,ms ng+1,ns
{593(’5) (U((n ) ¢ " ))}
(4.6)
and
d (n1,n2) 2 5
O3 = — UK Im
dt fod 5:21,2 4.7

(55, (¢ gg, +1,n§))

The action of the external fields changes the indices n; and
ng of the expansion coefficients, i.e., different contributions
to Eq. 4.1 are mixed. However, due to the rotating wave
approximation the sum of excitations of the field and the

aggregate is conserved and the relation
m+ns+a—b=0 (4.8)

holds for the indices of the expansion coefficients. Eq. 4.8
remains valid also for the remaining contributions to Eq.
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3.1. For the dipole-dipole coupling this is a consequence of
the applied Heitler-London approximation which conserves
the number of molecular excitations during exciton transfer.
Using Eq. 4.8 the index ng, for example, can be dropped.
In principle the remaining index n; still goes from —oc to
+oo. If, however, one of the two pulses is weak, as for
example, in a pump-probe experiment, then the set of equa-
tions can be closed by restricting n, to ny = {-1,0,1}
assummg that pulse 1 is the weak probe pulse. Notice also
that (083" (m,m; £))t = 6™ ") (n, m; t) which re-
lates the expansion coefficients for different exciton vari-
ables.

Next we discuss the issue of factorization of expectation
values introduced in Section III in the present context. Fol-
lowing the reasoning of Section III we suggest the simple
factorization scheme for the expansion coefficients

("‘) (m,n;t) = Za(") UOb‘ ")( ;) (4.9)

Applying this scheme, for example, to Eq. 3.26 leads to the
following transfer equation for the population of the second
excited molecular state at site n

= ZnZ]JnHz“—)—;—r—Q
[022‘)(11 t +Z{ag (n,t)

[(m - 1)0‘"1‘")(k, £)

d
om 1)

+qza("1 ")(k t)}

—x? 011 ('n t)a(nl_")(k‘, t)}
(4.10)

Equations of motion for the expansion coefficients of the
remaining variables are obtained in direct analogy.

Finally, we give the relation between the above defined
expansion coefficients and the differential pump-probe ab-
sorption spectrum defined as

% Stot( pu s pr:Td) - Stot(gpu = D)Epr)
84 Stot( pu — Oﬁgpr)

(@.11)

Here Stot(Epu, Epry 7a) Is the energy loss that a weak probe
pulse (wave vector k. = k;) experiences when traveling
through the probe. This quantity is investigated in depen-
dence on the delay time 7, to a strong pump pulse (wave
vector kpy = k). Siot(Epy = 0,&,,) is the probe pulse
energy loss in the linear optical regime, i.e., without the
pump-pulse. For the calculation of Sy, we need the enve-
lope of the spatlal part of the nonlinear polarization wave
Plrev=0me=1)(4) traveling in probe pulse direction. The
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overall light induced polarization reads (¢f. Eq. 2.16)

P(rgt) = Z Hn Z ei Es:pu,pl n,(ksr—w,t)aigpm"pr)
n

Mpu,Tpr

(4.12)

The desired envelope of the polarization traveling along k,,
is obtained as

Pl =0m=D(g) = 3 o nre=0mer=l) 1y (4.13)
ki)

wpr

The integral energy loss experienced by the probe beam fi-
nally follows as

+oo

Seot = Zopelm / dEn (PEm=omm=l () (414)

Together with the discussed truncation scheme for the
set of equations for the expansion coefficients this expres-
sion enables us to calculate purmp-probe spectra for arbi-
trary strong pump fields. Of particular importance hereby
is the intensity dependence of the spectra. As demonstrated
in Ref. 26 EEA affect the global behavior of pump-probe
spectra qualitatively and a nonperturbative inclusion of the
pump field is required.

V. SUMMARY

A closed set of equations of motion for expectation val-
ues of excitonic oscillator variables (operator products) has
been derived. They include contributions from exciton trans-
fer, Eqs. 3.26-3.27, stochastic exciton-vibrational coupling,
Egs. 3.21-3.24, and internal conversion, Eqs. 3.10-3.14.
This allows the calculation of the optical polarization ac-
cording to Eqgs. 3.1 and 2.16. A prescription of how to
extract the nonlinear optical signal for a pump-probe setup
in any order of perturbation theory with respect to the pump
pulse has been given as well. The most important approxi-
maticn has been the perturbative treatment of site-site corre-
lations within second order with respect to the dipole-dipole
coupling. This treatment is justified if the dipole-dipole in-
teraction is small compared to the amplitude of the stochas-
tic modulation of the transition energies. It should be noted
that the present factorization scheme for multi-site corre-
lation functions is not the only possible choice (¢f. Ref.
32), but it gives a rather small number of coupled equations
which allows treatment of large aggregates. Whether other
factorizations would be superior for the description of a par-
ticular aspect of the nonlinear optical response remains to
be investigated.
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Qur approach goes beyond the standard rate limit type
description of exciton dynamics in the presence of annihi-
lation since multi-exciton populations and coherences are
taken into account. Further, the formulation in terms of
driven anharmonic excitonic oscillators enables us to estab-
lish a direct connection to observables in nonlinear optical
experiments.

In the Introduction we discussed the issue of energy
transfer in photosynthesis. The present approach is suited to
be applied to photosynthetic systems in two situations, First,
we can study exciton dynamics in antenna complexes with
weakly coupled pigment pools. A typical example would
be the LHC-II of green plants. Second, one could take the
broader point of view assuming that the dynamics inside a
particular pigment protein antenna complex is not of im-
portance. Instead, one is interested in the transfer and its
spectroscopic signatures in a large domain of antennae (e.g.,
an array of LH2 complexes surrounding the LH! which en-
circles the reaction center in purple bacteria). In this case
individual antenna complexes would be modeled as elec-
tronic three level systems. The inclusion of the reaction
center in terms of a particle trap into the existing theory is
straightforward.

APPENDIX A: DERIVATION OF EQ. (3.26)

A second order transfer rate for the higher excited state
populations can be obtained after writing down the equation
of motion for the operator product on the right-hand side
of Eq. 3.26. This equation will be formally solved and
products of operators acting at different sites will be factor-
ized. This factorization is therefore correct in the second
order with respect to the dipole-dipole interaction. We start
with the contribution from the dipole-dipole coupling to the
equation of motion which reads
2

= = |me(BL(Bn)?

+(2x? — 1)(B1)?(Ba)? B] B
—x2B},B,B] B,

+42(BL)2(Ba)2 (B} (Br)]
(A1)

d
in & ty2
i dt(B") BB,

The diagonal part of H,, contributes according to

d e
d—t(Bl)anBk =#((h, — 0)(B!)?B,.By

diag—ex
—iAk(BL)2(Bn)*(B])*(By)?
(A2)
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To obtain an expression for the dephasing rate, the contribu-
tion due to exciton vibrational coupling is examined. Since
inter-site correlations of fluctuations are neglected, we can
write the exciton vibrational coupling in terms of the intra-
site dephasing terms derived in Section IIL. We have

By,
ex—vib
tyep (2
+(Bl)*Bn. | —Bx

di exvib)

= —T((y — 1) + 1){(B},)* Bo. By)

~T(y = 2)*((B})*BnBL(B)*)
(A3)

d
~(B1y2
T (B)Y*B,B:

d
~ —(B!)2B
ex—vib (dt( n) "

By combining the diagonal parts of Eqs. A2 and A3 with
the equation of motion containing the dipole-dipole interac-
tion Bq. Al we arrive at the following expression for the
expectation value

. b .,
(BLPB.Bu0) = — [ dv oo

k|[{(BLA(BL)2) (¢ 1)
262 — 1{(BDABL)2) (- ){BIBe)(t — )
—w2(B},By)(t — ¢')(BI Bi)(t — )

+a{(BLA(Ba)A) e — V(BB ~ ¥)]
(A%)

Note that a site specific factorization of the expectation val-
ues on the right-hand side has been carried out. Further, we
used I' = I'((y —1)? + 1) and replaced €2} by ) assuming
that the dephasing (I’) is much stronger than the detuning of
the Sy state. For strong dephasing the Markov approxima-
tion is justified as discussed earlier. Thus we can replace in
the integrand of Eq. A4 the time ¢ — ¢’ by ¢ and carry out
the integration (setting the upper limit formally to infinity)
resulting in a Lorentzian. After introducing the solution into
Eq. 3.25 we finally arrive at Eq. 3.26.

APPENDIX B: MASTER EQUATION

It is instructive to make the connection between the dy-
namics of the excitonic oscillator variables and the popu-
lations of the different electronic states of each pigment.
We have Nop, = (12,)(2nl} = 7 2((BS)2(Bn)?), Nin =
{112)(Aal) = (BLBn) — {(BL)*(Bn)?), and Non = 1
Ng, — N1, Baq. 3.26 expressed in terms of population
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variables then becomes

d 2 r
— N ex— —T 2 2—"—_.,
at Ven | ngn | Jol (Qn — Q)2 + 12
x { NanNog + 6% Non N1k — 52Ny Naj, — NigNip }
(B

The interpretation of the different terms on the right-hand
side is straightforward. The first two terms couple the transi-
tion |2n) — |15) at the n- site to the transitions |0;) — |14)
and |1x) — |2;) at the k-th site. The first process corre-
sponds to exciton fission (see Fig. 3(A)), whereas the sec-
ond process describes the transfer of a higher excited state
excitation (see Fig. 3(B)). The third term is equivalent to
the second one with interchanged site indices. The fourth
term in Eq. (B1) describes the fission of two single excited
state excitons leading to a higher excited state exciton (see
Fig. 3(C)). This process combined with internal conversion
obtained from Eqs. 3.14 and 3.13 as

4
dt

d .,
Now| =~ pr = — 271 (Qn)x2 Ny, (B2)
Ic

Nln
IC

provides the microscopic picture for exciton-exciton annihi-
lation in the considered aggregate.

Next we turn to the population of the first excited state.
The respective equation of motion can be obtained from Eq.
3.27. We get

(A)
SN_I_ — Sn
T
S°T K

° n k
{C) (D)
Sy— — Sy—— —
or e —
So T Tk %o n —é_

Fig. 3. Tlustration of different contributions to Egs. Bl
and B3: (A) first term of Eq. B1 (exciton fission);
(B) second term of Eq, Bl (Sy-state transfer);
(C} fourth term of Eq. B1 (exciton fusion); (D)
first term of Eq. B3 () -state transfer).
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& @ P I
X ({N1nNok + 52 Nan Noi, + 64 Ngp N} — {k n})
(B3)

d 2 o r
Nln. +2N2n)= gik:ﬁ/ |Jnk|

From this representation the physical origins of the single
terms become obvious. The first term describes the motion
of an exciton in first excited state manifold (see Fig. 3(D))
the second term is responsible for the fission of a higher
excited state exciton into two first excited state excitons,
whereas the third term describes the motion of a higher ex-
cited state exciton. Note that for the missing exciton fusion
term it holds £ Ny, = —22 N,,.) and therefore such a term
does not appear explicitly on the right-hand side of Eq. B3.
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