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Electron transfer through a molecular wire: Consideration of electron-vibrational coupling
within the Liouville space pathway technique

V. May
Institüt für Physik, Humboldt-Universita¨t zu Berlin, Hausvogteiplatz, D-10117 Berlin, Federal Republic of Germany

~Received 15 January 2002; revised manuscript received 16 August 2002!

To fully account for electron-vibrational coupling and vibrational relaxation in the course of electron motion
through a molecular wire a density operator approach is utilized. If combined with a particular projection
operator technique a generalized master equation can be derived which governs the populations of the elec-
tronic wire states. The respective memory kernels are determined beyond any perturbation theory with respect
to the electron-vibrational coupling and can be classified via so-called Liouville space pathways. An ordering
of the different contributions to the current-voltage characteristics becomes possible by introducing an electron
transmission coefficient which describes ballistic as well as inelastic electron transport through the wire. The
general derivations are illustrated by numerical calculations which demonstrate the drastic influence of the
electron-vibrational coupling on the wire transmission coefficient as well as on the current-voltage character-
istics.
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I. INTRODUCTION

It is an old dream of molecular electronics to hand
single molecules as active elements of nanoscale ele
circuits.1–4 Meanwhile, is became possible to attache mic
electrodes to single molecules and to study their conducti
as well as to derive relatedIV characteristics~see, for ex-
ample, Refs. 5–7, and the recent overview in Ref. 8!. This
experimental progress initiated a number of theoretical s
ies aimed at reproducing measuredIV characteristics~com-
pare Refs. 9–13, and references therein as well as the re
papers of Refs. 14 and 15!.

Such studies concern an accurate classification and c
putation of all molecular wire levels involved in the electro
transfer. Furthermore it is of great interest to understand
which manner the coupling of the wire to the electrod
modifies the wire states. This may concern short-range c
plings defined by the concrete type of chemical bond~see,
e.g., Refs. 12 and 16!. But also long-range Coulomb effec
can come into play, which in the most simple case are
counted for via so-called mirror charge effects.17,18The pres-
ence of the applied voltage may change the molecular o
als of the wire in a manner which should be determin
self-consistently during the computation of the orbitals a
which decides on the voltage drop over the wire.19 But it also
decides whether the electron transfer through the wire
single-electron transfer or if two or more electrons are
volved simultaneously.10,18,20,21

It is typical for all these approaches that the electron c
duction of the wire is described as the result of a comple
ballistic transport characterized by the transfer ratekL→R
from the left to the right electrode~see also Sec. III A!. How-
ever, a number of recent computations aimed to inclu
inelastic-scattering processes of the transferred electro
molecular vibrations.22–28 The case of very slow vibration
where the electron-vibrational coupling can be handled
static disorder has been discussed in Ref. 22. In Ref.
electron-vibrational coupling was embedded into a gener
0163-1829/2002/66~24!/2454XX~20!/$20.00 66 2454
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zation of the Landauer theory. An approach based on
Su-Schrieffer-Heeger model was used in Refs. 23, 25,
27, whereas the Redfield theory could be applied in Ref.
~see also Ref. 15!. A treatment which incorporates the cou
pling to a single vibrational mode in an exact way has be
presented in Ref. 28. But it neglects electronic coheren
which are of importance if one takes a description beyon
pure hopping transfer.

Of course such treatments are of interest whenever
coupling of the wire levels to the continuum of electro
states is weak enough. In the contrary case the broadenin
the wire levels by the coupling to the electrode levels m
dominate the transmission. This would be the case if che
sorption of the wire to the electrode atoms appears, for
ample, to be observed for paradithiohydroquinone on a g
electrode and is described in Ref. 6~see also the computatio
in Ref. 13!. If the wire is noncovalently attached to the ele
trode ~as is the case for the DNA strands studied in Ref.!
this continuum-induced broadening should be less domin
and inelastic effects of the electron transmission within
wire may have a noticeable influence. Or in other words
the wire-level broadening due to the coupling to electro
levels becomes smaller than characteristic vibrational e
gies the latter may determine all theIV characteristics of the
wire. It is just this case we will concentrate on in the follow
ing. ~An approach which accounts for both effects, wire-lev
broadening and formation of vibrational substates, will
given elsewhere.29! In particular we will profit from the
theory describing electron transfer through molecular don
acceptor complexes

From standard electron transfer theory the importance
the proper description of electron-vibrational coupling is o
vious ~see the excellent overviews in Ref. 30!. In the frame-
work of this theory the mentioned ballistic transport
known as superexchange electron transfer. For the pre
example the superexchange mechanism dominates ch
motion when the wire levels to be occupied by the tra
ferred electron@the adiabatic lowest unoccupied molecul
orbital ~LUMO! levels# are far away from the electrode lev
©2002 The American Physical SocietyXX-1
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V. MAY PHYSICAL REVIEW B 66, 2454XX ~2002!
els~see the upper part of Fig. 1!. In contrast, the transfer ma
proceed as a hoppinglike process~sequential electron trans
fer! if the wire levels are positioned near the energies of
electrode levels. If the applied voltage is increased one m
change from one type of electron transfer to the other. Ob
ously, within a singleIV characteristic both mechanism
may act and a comprehensive theory is required which

FIG. 1. ~a! Scheme of a molecular wire embedded betwee
left ~L! and right ~R! microelectrode.~b! Energy-level scheme o
the electrode–molecular-wire–electrode system of~a!. The dark
part of the left and right electrodes stands for the Fermi sea.
block in the middle gives the set of adiabatic states of the w
realized if the wire is populated by a single excess electron. Volt
bias is chosen to have a resulting electron motion from the lef
the right. Upper part: Wire levels are far away from the Fer
energies~scheme of superexchange electron transfer!. Lower part:
Wire levels positioned in the region of the Fermi energies~scheme
of hoppinglike electron transfer!.
2454X
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counts for both types of electron transfer mechanisms as
as the transition regime between them.

A unifying description of all electron transfer mechanism
is achieved when starting with a density-matrix theory fo
mulated in the properly chosen electron-vibrational sta
~cf, e.g., Ref. 31!. The complete set of density-matrix ele
ments is of interest if, for example, optical experiments
so-called ultrafast electron transfer are considered. In
present case ofIV characteristics, however, one only nee
the net current of charge transfer through the wire, and
suffices to calculate the total electronic state populatio
Such a description of electron transfer has been alre
given in Refs. 32 and 33 for two- and three-site systems
directly leads to~generalized! rate equations for the elec
tronic state population and simultaneously accounts, via
spective rate expressions, for the superexchange and seq
tial mechanisms.

Here such a density-matrix treatment of electron trans
reactions will be adopted to account for inelastic contrib
tions to the entire electron transport through molecular wir
This is done by including vibrational degrees of freedo
~DOF!, considering relaxation of the active vibrational coo
dinates~the reaction coordinates!, and utilizing techniques of
dissipative quantum dynamics.31,34,35 As a result ~general-
ized! rate equations for the electronic state population can
derived where the rate expressions are given as an expan
with respect to the electrode-wire interaction matrix e
ments, but incorporates electron-vibrational coupling in
exact way. The type of the expansion to be used can
classified by so-called Liouville space pathways.33 Accord-
ing to the mentioned expansion the rates account for e
tronic and vibrational coherence, and in this manner they
well beyond simple hopping rates for electrode-wire tran
tions. In a certain limit the approach reproduces stand
formulas for the electron transmission through a molecu
wire ~see, e.g., Ref. 15!.

Since the present paper mainly focuses on the gen
scheme for the incorporation of electron-vibrational coupli
into the studies of charge motion through molecular wires
use the simple model for the wire-electrode system as gi
in Fig. 1. We assume that the wire electronic states and
relevant types of vibrations are given quantities and that th
dependence on the applied voltage as well as the vol
drop across the wire is known. Intrawire coupling may
assumed either to be strong or very weak. In the latter c
every wire level can be described as a level being decou
from the others. In the first case, i.e., when the wire inter
relaxation should be fast compared to the electron motio
thermal equilibrium among the different levels can be p
vided.

The paper is organized as follows. In the next section
model together with the basic density-matrix treatment
given. The derivation of rate equations for the complete el
tronic state populations~of the two electrodes and the adia
batic wire states! and related electron transfer rates up to t
fourth order with respect to the electrode-wire coupling a
explained in Sec. III. Numerical illustrations can be found
Sec. VI. Based on a regular tight-binding model the w
states are introduced and the various contributions to
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ELECTRON TRANSFER THROUGH A MOLECULAR . . . PHYSICAL REVIEW B 66, 2454XX ~2002!
transition rates of the fourth order with respect to the wi
electrode coupling are discussed. Finally,IV characteristics
for a two-state wire are presented. The paper ends with s
concluding remarks.

II. THE MODEL AND BASIC DENSITY OPERATOR
EQUATIONS

According to the electrode-wire-electrode system int
duced in Fig. 1 we separate the complete Hamiltonian in
wire part, the electrode contributions, and a respective c
pling,

H5Hwire1Hel1Hel-wire. ~1!

For the HamiltonianHwire we provide an expansion with
respect to adiabatic wire stateswa which refer to LUMO
levels occupied by the excess electrons~the certain limita-
tions inherent to such a single-electron approach are
cussed, for example, in Ref. 36!:

Hwire5(
a

~\«a1Ha!uwa&^wau. ~2!

Ha5Tneu1DUa denotes the vibrational Hamiltonian whic
belongs to the statewa ~see Fig. 2!. For notational conve-
nience we split off the minimum minUa5Ua

(0)[\«a of the
complete potential-energy surfaceUa . The remaining differ-
enceDUa appears in the vibrational Hamiltonian.

FIG. 2. Potential-energy surface scheme of the electrode-w
electrode system of Fig. 1. For the left electrode only tho
potential-energy surfacesUneu are shown which correspond t
populated electron levels@below EF

(L)]. In the case of the right
electrode theUneuare drawn referring to empty levels@aboveEF

(R)].
The middle part contains the potential-energy surfaceUa of the
adiabatic wire states.~To be able to distinguish the differen
potential-energy surfaces from one another horizontal displacem
has been strongly enlarged.!
2454X
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The Hamiltonian which describes the vibrational dyna
ics of the neutral wire~if the excess electron is absent! is
written asHneu. It will be combined with the band energie
EXk[\«Xk (X5L,R). Consequently, the electrode Ham
tonian reads

HX5(
k

~\«Xk1Hneu!uwXk&^wXku. ~3!

For further use we introduce stateswm wherem should com-
prise the wire electronic quantum numbersa as well as those
of the two electrodes, i.e., (Xk).

All vibrational Hamiltonians introduced so far are define
with respect to the setQ5$Qj% of active vibrational coordi-
nates~see the scheme in Fig. 2!. At present there is no chanc
for anab initio calculation of potential-energy surfacesUa of
the wire. Therefore, one has to make reasonable assu
tions, from which the most basic provides surfaces for u
coupled harmonic vibrations where the equilibrium positi
has been shifted depending on the actual electronic state
excess electron occupies.~Possibly, the adiabatic levels ma
be connected by nonadiabatic couplingsua,b .) The vibra-
tional eigenstates will be denoted asxmM with the setM of
vibrational quantum numbers. The respective vibrational
ergies read\vmM @because of Eqs.~2! and ~3! they start at
the zero-point energy; form5X we drop the electronic index
to getvM].

Finally we give the coupling Hamiltonian between th
wire and the electrodes as

Hel-wire5(
k,a

~VLk,auwLk&^wau1Va,Rkuwa&^wRku!1H. c.

~4!

In a general treatment the applied voltage has to be
counted for self-consistently within the electronic structu
calculation for the wire.

Likewise we can introduce a notation of the electrod
wire coupling which directly accounts for the continuo
electronic energy levels of the electrodes. Therefore the e
trode density of states

NX~v!5(
k

d~v2«Xk! ~5!

is introduced. This enables us to replace the wire-electr
coupling matrix elements of Eq.~4! by VX,a(v).

The models introduced so far will be completed by a co
pling of the setQ of active vibrational coordinates to remain
ing passive coordinates.31,30 These coordinates are denote
asZ5$Zj% and act as a dissipative reservoir. They may b
long to the molecular wire or, if present, to a surroundi
solvent. The respective coupling Hamiltonian is used in
form

HS-R5(
m

Wm~Q,Z!uwm&^wmu. ~6!

e-
e
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V. MAY PHYSICAL REVIEW B 66, 2454XX ~2002!
The restriction to only diagonal contributions with respect
the electronic states inHS-R represents an additional assum
tion.

The model specified so far seems relatively simple if
duced to its electronic DOF. However, it will be demo
strated below that the use of delocalized electronic eig
states of the wire~adiabatic states! extended to the respectiv
potential-energy surface is just a very appropriate descrip
for inelastic electron transfer through the wire. Note also t
this is the natural way to consider what is known as
polaron picture of transport. Furthermore, the separation
the vibrational DOF into an active set and a set of reserv
modes has the great advantage to directly model vibratio
energy redistribution and to include final lifetimes of vibr
tional states. In the description explained below these p
cesses are restricted to a given electronic state. But the
clusion of nonadiabatic couplings may extend the p
intrastate inelastic processes by intrastate contributio
However, this is not a subject of the present studies and
be postponed to future activities.

A. Reduced density operator equations

As already explained our approach is based on the in
duction of anactiveelectron-vibrational system coupled to
passivesystem of reservoir~bath! DOF. Therefore, we have
to utilize the methods of dissipative quantu
dynamics.31,34,35The central quantity is the reduced dens
operator

r̂~ t !5trR$Ŵ~ t !%, ~7!

which is obtained from the complete statistical operatorŴ(t)
via a trace operation restricted to the reservoir states. T
the total population realized in the electronic statewm fol-
lows as

Pm~ t !5trvib$^wmur̂~ t !uwm&%. ~8!

The equation of motion forr̂ reads~see, e.g., Ref. 31!

]

]t
r̂~ t !52 iLr̂~ t !. ~9!

Here, the Liouville superoperatorL accounts for dissipation
too. We use a separation into a zero–order part and a
pling contribution according to

L5L01LV . ~10!

The coupling contribution comprises the wire-electrode c
pling Eq. ~4!,

LV5
1

\
~Hel-wire . . . !2 , ~11!

whereas the zero-order part reads

L05
1

\
~Hwire1HL1HR . . . !22 iD. ~12!
2454X
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It is given by the wire Hamiltonian Eq.~2! and the electrode
Hamiltonian Eq.~3!. The superoperatorD accounts for dis-
sipation. According to the introduced model of the coupli
to an environment, Eq.~6!, dissipation proceeds as an in
traelectronic state vibrational relaxation. Details on the str
ture of D can be found in Appendix A.

III. RATE EQUATION FOR THE ELECTRONIC STATE
POPULATIONS

A. Some preliminary remarks

To underline the character of the results derived in
following parts of this paper we briefly recall those expre
sions which are more or less standard for the theoretical
scription of molecular wire conductivity.15 Our description of
electron transfer will end with rate equations governing
time dependence of the electronic state populations. Th
rate equations can be derived from the so-called general
master equation~GME!, ~see, for example, Ref. 31! in the
limit of short memory effects~in relation to the electron
transfer time through the wire! and have the standard form

]

]t
Pm52 (

mÞn
~km→nPm2kn→mPn! ~13!

with rates km→n describing the transition from electroni
statewm to wn . ~Note also the remark in Appendix B1 on th
fact that for a stationary situation the memory kernels au
matically reduce to ordinary rate expressions.!

For the present example of a molecular wire embed
within two microelectrodes the following rates appear: t
transfer rates into the wirekL→a , kR→a and out of the wire
ka→L , ka→R , the rates for intrawire transitionska→b , and
the rateskL→R and kR→L which directly interconnect both
electrodes. In the language used to describe donor-acce
electron transfer mediated by a molecular bridge the la
rates refer to the superexchange mechanisms wherea
other contributions are related to sequential processes.
case where these sequential processes are of minor im
tance one can expect a current formula which is direc
proportional tokL→R2kR→L . Otherwise one has to solve th
complete set of rate equations~13!. If the former-mentioned
case can be provided the rate of forward transition reads

kL→R5(
k,q

f Lk f RqkLk→Rq , ~14!

with Fermi’s Golden Rule expression kLk→Rq5
2puTLk,Rq /\u2 d(vLk2vRq) for the rate, and theT matrix
TLk,Rq of the left-right transition. The single-electron distr
bution reads for the left electrode

f Lk5 f Fermi~\vLk! ~15!

and

f Rq5@12 f Fermi~\vRq2eV!# ~16!

for the right electrode. In both casesf Fermi denotes the Ferm
distribution. Such a single-electron approach is common
the literature~see, for example, Ref. 15! but has been criti-
X-4
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ELECTRON TRANSFER THROUGH A MOLECULAR . . . PHYSICAL REVIEW B 66, 2454XX ~2002!
cized on fundamental grounds36 ~cf. also the multielectron
approach on electron tunneling through an array of quan
dots37–39!.

Alternative notations of Eq.~14! have been presented i
different ways. We mention the formulakL→R52p*dv

trel$Ĝ
(R)(v)Ĝ(v)Ĝ (L)(v)Ĝ1(v)% which has been adapte

here to the scheme of Fig. 1.12,13The expression incorporate
a trace with respect to all electronic states involved~those of
the wire and the two electrodes!. Ĝ denotes the~retarded!
Green’s operator of the wire~possibly including the interac
tion with the electrodes! and the operatorsĜ (L) and Ĝ (R)

describe the coupling of the wire to the left and the rig
electrodes, respectively. Both are of second order in the w
electrode coupling and include the density of electrode st
Eq. ~5! as well as the respective distribution functions, E
~15! and ~16!. They readĜ (X)(v)5 (a,bGab

(X)(v)uwa&^wbu
with the coupling rates (f Xk5 f X„«Xk…)

Gab
(X)~v!5

1

\2
VaX~v!VXb~v!NX~v! f X~v!. ~17!

In the most simple case the Green’s operator is given
Ĝ(v)5(a uwa&^wau/(v2«a1 i«) ~note«→10).

The introduction of the density of states of the left a
right electrode and the use of frequency instead of wa
vector-dependent wire-electrode coupling matrix eleme
results in the alternative notation of the transfer rate

kL→R5E dV ldV r(
a,b

Gab
(L)~V l !Tab~V l ,V r !Gba

(R)~V r !,

~18!

which will be preferred in the following. The quantitie
Tab(V l ,V r) will be of central interest for the consideration
in the whole paper. They describe the transmission of
electron through the wire which enters the wire with ene
\V l ~from the left electrode! and eventually changes its en
ergy to \V r if leaving the wire ~into the right electrode!.
Therefore we will name these quantities molecular w
transmission coefficients. How big the energy difference be
tween the incoming and outgoing electron might be is
rectly regulated by theTab .40

If the electronic wire levels are far away from the states
the electrode occupied initially and after the transmiss
process an easy derivation of theT matrix and the transmis
sion coefficients becomes possible. Since any energetic r
nance is absent between the electrodes and the wire le
the coupling between the wire and the left electrode o
weakly disturbs the initial state of the electron transfer p
cesses. Within first–order perturbation theory the states
the left electrode uwLk& have to be extended b
(bVLk,b /\( «Lk2«b) 3uwb&. Such a correction to the iso
lated electrode states results in an effective coupling ma
element between the states of the left and the right elect
which readsVLk,Rq

(eff) 5(bVLk,bVb,Rq /\(«Lk2«b). This matrix
element can be identified withTLk,Rq given in the Golden
Rule formula from above and is known in electron trans
theory as the superexchange coupling matrix element.31 The
2454X
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expression for theT matrix is easily converted into the fol
lowing expressions for the transmission coefficien
Tab(V l ,V r)52pd(V r2V l)/ u(V r2«a)(V l2«b)u.

The given derivation asks for a generalization which a
counts for vibrational DOF. To do this it only remains
replace the electronic state vectors and energies by respe
combinations with vibrational contributions, i.e., we take t
electron-vibrational statesxmMwm ~note thatm comprises the
wire states and those of both electrodes! and the energies
«m1vmM ~for the notation, see Sec. II!. Moreover, the ther-
mal distribution f th of vibrational quanta is introduced ex
tending the initial-state electron distribution given by t
Fermi distribution of the left electrode. Then one direc
obtains the transmission coefficient generalized to the inc
poration of vibrational contributions:

Tab~V l ,V r !52p (
M ,N

d~V r1vM2V l2vN! f th~\vN!

3(
K

^xMuxaK&^xaKuxN&
uV r1vM2«a2vaKu

3(
L

^xNuxbL&^xbLuxM&
uV l1vN2«b2vbLu

. ~19!

However, it is obvious that this formula does not give
complete description of the way electron-vibrational co
pling affects the charge motion through the wire. Accordi
to its derivation the expression forTab is only valid if ~i! the
wire levels are far away from the electrode levels and~ii ! if
any vibrational relaxation is absent. It will be the task of
following considerations to present a formalism and to d
rive expressions which are of the type of Eq.~18! but remain
valid also for the case of an energetic resonance between
wire levels and the electrode energies and account for vi
tional relaxation.

B. Projection operator and general rate expression

From the earlier studies in Refs. 32 and 33 it is know
how to derive rate equations of the type given in Eq.~13!
together with rate expressions which do not contain any
proximation with respect to the electron-vibrational co
pling. To this end one has to construct equations of mot
for the electronic state populations, Eq.~8!. The populations
can be deduced from the electron-vibrational~reduced! sta-
tistical operatorr̂(t), Eq. ~7!, via the trace with respect to
the vibrational DOF trvib$ . . . % and via a matrix elemen
given by the electronic statewm . It is a well-established
technique to determine such a reduced quantity by introd
ing a projection superoperatorP. The superoperator achieve
a separation of the reduced statistical operatorr̂(t) of the
electron-vibrational system into the sum of a time-depend
electronic part containing the state populations and into
brational statistical operatorsr̂ m . If applied to an arbitrary
operatorÔ the action ofP follows as

PÔ5(
m

r̂ mP̂mtr$P̂mÔ%. ~20!
X-5
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V. MAY PHYSICAL REVIEW B 66, 2454XX ~2002!
Here, tr$ . . . % denotes the trace with respect to the compl
set of electron-vibrational states,

P̂m5uwm&^wmu ~21!

is the projector on the various electronic states, and the
eratorsr̂ m refer to equilibrium states of the vibrational DO
which are realized if the respective electronic stateswm have
been occupied, i.e.,

r̂ a5exp~2Ha /kBT!/trvib$exp~2Ha /kBT!%

and

r̂ Xk[ r̂ neu5exp~2Hneu/kBT!/trvib$exp~2Hneu/kBT!%.

According to Eq.~20! the application ofP to the reduced
statistical operator results in

Pr̂~ t !5(
m

r̂ m P̂mPm~ t !. ~22!

If we take the trace with respect to the vibrational DOF a
chose the diagonal matrix element given by the statewm we
get from Eq.~22! the electronic population, Eq.~8!. In the
same manner a respective equation of motion forPm can be
constructed. The equations of motion for the state pop
tions in their most general form are known as GME’s a
represent rate equations which include memory effects. O
the latter are neglected ordinary rate equations of the typ
Eq. ~13! are obtained.

The GME for the state populations can be deduced fr
the Nakajima-Zwanzig identity forPr̂(t). It is given in Ap-
pendix B, Eq.~B2!, and represents an exact equation
Pr̂(t). Here, the only deviation from the standard case
given by the fact that the original equation of motion forr̂(t)
already accounts for dissipation. In this manner vibratio
energy relaxation and dephasing enters the rate expressi
be derived. From the Nakajima–Zwanzig identity one g
the required GME by taking respective matrix elements~see
Appendix B!. As a byproduct an expression for the memo
kernel of the GME follows. It is given in Eq.~B13! as a
quantity defined in the frequency domain which accounts
the electron–vibrational coupling beyond any perturbat
theory and which incorporates a perturbation series with
spect to the wire-electrode coupling, Eq.~4!. Taking the ker-
nel at v50 the rates entering the ordinary rate equatio
Eq. ~13! are obtained.

For the following studies we concentrate on rate expr
sions up to the fourth order with respect to the wire-electro
coupling. This approximation does not consider electro
induced wire-level renormalization but is sufficient for th
present aim to underline the importance of electro
vibrational coupling. Therefore we take the zero-frequen
limit of the exact kernel, Eq.~B13!, and introduce a restric
tion up to the fourth order with respect to the wire-electro
coupling. It gives the transition rates as
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km→n5E
0

`

dt Knm
(2)~ t !1E

0

`

dt1dt2dt3Knm
(4)~ t1 ,t2 ,t3!,

~23!

with the second-order contribution

Knm
(2)~ t !52tr$P̂nLVU0~ t !LVPP̂m%, ~24!

and the fourth-order contribution

Knm
(4)~ t1 ,t2 ,t3!5tr$P̂nLVU0~ t1!LV@U0~ t2!2P#

3LVU0~ t3!LVPP̂m%

5Knm
(4,nf)~ t1 ,t2 ,t3!2(

k
Knk

(2)~ t1!Kkm
(2)~ t3!.

~25!

Both expressions incorporate the change from the Gre
superoperator defined in the frequency domain to the tim
evolution superoperatorU0 @cf. Eq. ~B6!#, which is defined
via a complete neglect of the wire-electrode coupling. T
coupling is characterized in the above expressions by
Liouville superoperatorLV , Eq. ~11!. Note also thatPP̂m is
identical with r̂ mP̂m which represents the initial-stat
electron-vibrational density operator.

The separation ofKnm
(4) into the nonfactorized partKnm

(4,nf)

and into the factorized contributionsKnk
(2)Kkm

(2) results from
the projectorP combined withU0(t2). The appearance of th
factorized part needs an additional comment. First it is i
portant to underline that a description which is exclusive
based on second-order rate expressions such as Eq.~24! pro-
vides a complete dephasing between the wire states
those of the electrodes. This results from the fast intrae
tronic state relaxation compared to the electron transfer ti
Higher-order rate expressions which are in the present
scription of higher order with respect to the wire–electro
coupling account for vibrational and electronic coheren
between wire states and the electrode levels. At the s
time, however, they partially account for vibrational rela
ation. It will be shown below in more detail that it is the ro
of the factorized partKnk

(2)Kkm
(2) to compensate these relax

ational contributions to avoid double counting when solvi
the rate equations.

The rate kernels can be directly computed when carry
out the various commutators involved. But alternatively o
can use a classification based on the so-called Liouv
space pathway description introduced in Fig. 11 of Appen
B below. In the next section we will calculate the secon
order rate expressions. Independent from their appearan
the GME they are necessary to compute the factorized p
Eq. ~25!, of the fourth-order rate. These calculations are f
lowed by an detailed analysis of the fourth-order rate expr
sions.
X-6
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IV. CALCULATION OF THE SECOND-ORDER RATE
EXPRESSIONS

Taking the Liouville space pathway representation of
rate as given in Fig. 3 one first notices that within a seco
order expression the ratekLk→Rq does not exist. There only
exist kLk→a andka→Rq . The respective rate kernels alrea
introduced in Eq.~24! read in more detail~for Ũm see Ap-
pendix A!

Ka,Lk
(2) ~ t !52tr$P̂aLVU0~ t !LVr̂ neuP̂Lk%

5
uVa,Lku2

\2
e2 i («Lk2«a)ttrvib$Ũneu~ t ! r̂ neuŨa

1~ t !%1c.c.

~26!

and

KRq,a
(2) ~ t !52tr$P̂RqLVU0~ t !LVr̂ neuP̂a%

5
uVRq,au2

\2
ei («Rq2«a)ttrvib$Ũa~ t ! r̂ aŨneu

1 ~ t !%1c.c.,

~27!

In the second part of each expression we used Figs. 3 a
to simplify the trace expression. In particular, pathway II
Fig. 4 can be used to compute both trace expressions.
upper-left part of pathway II@from (LL) to (ab)] gives the
expression forKa,Lk

(2) and the lower left@from (ab) to (RR)]
that for KRq,a

(2) . Both second-order kernels, Eqs.~26! and
~27!, contain the two different types of correlation functio
~note the rearrangement of operators under the trace!

Cneu,a~ t !5trvib$ r̂ neuŨneu~ t !Ũa
1~ t !% ~28!

and

Ca,neu~ t !5trvib$ r̂ aŨa~ t !Ũneu
1 ~ t !%, ~29!

where the first index (a in the latter formula! indicates the
electronic state to which the thermal equilibrium of the

FIG. 3. Scheme of electronic density operator elements app
ing in the fourth-order expression for the left-electrode-to-rig
electrode transition. The transfer proceeds from the upper-left
ment LL to the lower-right elementRR via all intermediate parts
~for a detailed explanation, see Fig. 11 below!.
2454X
e
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brational DOF refers~initial state of the transition!. Noting
Eq. ~14! the complete rate expression of the second or
reads@for f Lk see Eq.~15!#

kL→a5(
k

f LkE
0

`

dt Ka,Lk
(2) ~ t !. ~30!

Instead of carrying out thek summation we introduce the
density of states for the left-electrode levels, Eq.~5!, and the
coupling rate, Eq.~17!. This results in the following repre
sentation of the rate:

kL→a5E dV lE
0

`

dt Gaa
(L)~V l !e

2 i (V l2«a)tCneu,a~ t !1c.c.

~31!

In the same manner we obtain

ka→R5E dV rE
0

`

dt Gaa
(R)~V r !e

i (Vr2«a)tCa,neu~ t !1c.c.,

~32!

where all quantities involved are now defined for the rig
electrode.

Although both rate expressions are related to wir
electrode transitions they are common in electron tran
theory where they are usually termed nonadiabatic rates~see,

r-
-
e-

FIG. 4. Three different pathways of scheme in Fig. 3 cor
sponding to the left-electrode-to-right-electrode transition shown
Fig. 1. ~There are three further pathways leading to compl
conjugate expressions of those shown in the figure.! Pathway I only
incorporates intermediate density operators which are off diago
with respect to the electronic states. This pathway may be relate
what is known as the superexchange mechanism of electron tr
fer. Diagonal contributions appear in the middle of pathways II a
III ~elementab with a5b). They incorporate intraelectronic stat
vibrational relaxation.
X-7
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e.g., Refs. 31 and 30!. The only nonstandard item here is th
incorporation of vibrational level broadening.

V. CALCULATION OF THE FOURTH-ORDER RATE
EXPRESSION

For the following we will exclusively concentrate on th
left-right-electrode transition. Of course fourth-order expr
sions also exist for the rates coupling the wire levels direc
to the electrodes. However, their computation is outside
scope of this paper and will be discussed elsewhere.

The ~nonfactorized! fourth-order kernel related to th
transition ratekL→R reads

KRq,Lk
(4,nf) ~ t1 ,t2 ,t3!

5tr$P̂RqLVU0~ t1!LVU0~ t2!LVU0~ t3!LVr̂ LP̂Lk%.

~33!

The various types of density operators appearing during
time evolutions contained in this kernel are shown in Fig
within a two-dimensional scheme. One starts with the vib
tional equilibrium in the left-electrode statewLk ~described
by r̂ LP̂Lk). According to the action ofLV the first or the
second electronic quantum number changes. Thus afte
time-evolution superoperator has been applied we may m
in the scheme one position to the right with quantum nu
bers (Lb) or one position low with quantum numbers (aL).
This procedure is continued up to arrival at the density
erator diagonal in the quantum numbersRq of the right elec-
trode. It is obvious that there exist six different ways whi
fo

tio

2454X
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correspond to trace expressions being pairwise complex
jugated one to another. The three essentially different p
ways are shown in Fig. 4.

The transition rate which connects the left with the rig
electrode is obtained from the fourth-order kernel, Eq.~25!,
as

kL→R5(
k,q

f Lk f RqE
0

`

dt1dt2dt3KRq,Lk
(4) ~ t1 ,t2 ,t3!. ~34!

It separates into a nonfactorized part and into factorized c
tributions formed by the second-order rate expressions.

Concentrating first on the nonfactorized partKRq,Lk
(4,nf) of the

kernel one notices its decomposition into three terms rela
to the pathways I–III of Fig. 4. The part referring to pathw
I only contains density operators that are off diagonal w
respect to the electronic quantum numbers. This pathw
describes the superexchange~tunneling! type of electron
transfer,33 whereas the terms related to pathways II and
account for a sequential type of transfer. Since for these p
ways the intermediate density operator may become diag
with respect to the electronic quantum numbers of the w
~see Fig. 4!, intrawire-state vibrational relaxation takes plac

To calculate the nonfactorized part ofKRq,Lk
(4) introduced

in Eq. ~34! we take Eq.~25! and note the pathways labele
I–III in Fig. 4. The notation follows the graphs of Fig. 1
below where we start from the initial density operator a
put respective operators to the left as well as to the rig
Remember that the electronic wire energies\«a have been
split off from the time-evolution operators. We obtain
KRq,Lk
(4,I ) ~ t1 ,t2 ,t3!5

1

\4 (
a,b

exp~2 i«Lk~ t31t2!1 i«Rq~ t21t1!2 i«at11 i«bt3!

3trvib$VRq,aŨa~ t1!Va,LkŨneu~ t2!Ũneu~ t3! r̂ neuVLk,bŨb
1~ t3!Vb,RqŨneu

1 ~ t2!Ũneu
1 ~ t1!%1c. c. ~35!
op-
er-
re-

le
ion
c
epa-
al

ay
be-
All transfer-matrix elements can be put outside the trace
mula,

KRq,Lk
(4,I ) ~ t1 ,t2 ,t3!5

1

\4 (
a,b

Va,LkVLk,bVb,RqVRq,a

3exp„i ~«Rq2«a!t12 i ~«Lk2«Rq!t2

2 i ~«Lk2«b!t3…Cab
(I )~ t1 ,t2 ,t3!1c. c.,

~36!

and the trace expression results in a three-time correla
function which can be written as
r-

n

Cab
(I )~ t1 ,t2 ,t3!5trvib$Ũa~ t1!Ũneu~ t21t3! r̂ neuŨb

1~ t3!

3Ũneu
1 ~ t21t1!%. ~37!

For practical reasons we do not give an arrangement of
erators with the equilibrium statistical operator at the out
left position. Furthermore, one should notice that the cor
lation function is labeled by the number of the Liouvil
space pathway to which the function belongs. The notat
introduced in Eq.~36! shows that contributions of electroni
and vibrational states to the complete rates could be s
rated. In particular, neglecting the influence of vibration
DOF means to replaceCab

(I ) by 1.
Next we consider the kernel for the second pathway~see

Fig. 4!. In this case as well as in the case of the third pathw
there exist an intermediate density operator which may
X-8



th
id

ffi

,

ns
an-
tate
his
in

p-
the
out
-

nic
n.
ted
all

-

via
nts

me
nt
en-

tion

ex-
-

vi-
bra-

res-
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diagonal with respect to the wire states. In such a case
dissipation acts differently from the way it has been cons
ered in pathway I@cf. Eq. ~A5!# We obtain

KRq,Lk
(4,II ) ~ t1 ,t2 ,t3!5

1

\4 (
a,b

exp„i ~«Rq2«a!t12 i ~«a2«b!t2

2 i ~«Lk2«b!t3…trvib$VRq,aŨa~ t1!Uab~ t2!

3@Va,LkŨneu~ t3! r̂ neuVLk,bŨb
1~ t3!#

3Vb,RqŨneu
1 ~ t1!%1c. c. ~38!

If aÞb the time-evolution superoperatorUab(t2) reduces to
the action ofŨa(t2) from the left andŨb

1(t2) from the right.
For a5b, however, the dissipative dynamics are more di
cult to describe. In this case we will further writeUaa(t2).
Therefore we get

KRq,Lk
(4,II ) ~ t1 ,t2 ,t3!5

1

\4 (
a,b

Va,LkVLk,bVb,RqVRq,aexp„i ~«Rq

2«a!t12 i ~«a2«b!t2

2 i ~«Lk2«b!t3…„da,bCaa
(II )~ t1 ,t2 ,t3!

1~12da,b!Cab
(II ,od)~ t1 ,t2 ,t3!…1c. c.

~39!

The off-diagonal~od! contribution reads similarly toCab
(I ) ,

Eq. ~37!,

Cab
(II ,od)~ t1 ,t2 ,t3!5trvib$Ũa~ t11t2!Ũneu~ t3! r̂ neu

3Ũb
1~ t31t2!Ũneu

1 ~ t1!%, ~40!

however, the diagonal part follows as

Caa
(II )~ t1 ,t2 ,t3!5trvib$Ũa~ t1!Uaa~ t2!

3@Ũneu~ t3! r̂ neuŨa
1~ t3!#Ũneu

1 ~ t1!%.

~41!

Its behavior will be discussed later on.
Finally we denote the expression for the third pathway

KRq,Lk
(4,III )~ t1 ,t2 ,t3!5

1

\4 (
a,b

Va,LkVLk,bVb,RqVRq,a

3exp„2 i ~«Rq2«b!t12 i ~«a2«b!t2

2 i ~«Lk2«b!t3…„da,bCaa
(III )~ t1 ,t2 ,t3!

1~12da,b!Cab
(III ,od)~ t1 ,t2 ,t3!…1c. c.,

~42!

with

Cab
(III ,od)~ t1 ,t2 ,t3!5trvib$Ũneu~ t1!Ũa~ t2!Ũneu~ t3! r̂ neu

3Ũb
1~ t11t21t3!%, ~43!
2454X
e-
-

-

and with

Caa
(III )~ t1 ,t2 ,t3!5trvib$Ũneu~ t1!Uaa~ t2!

3@Ũneu~ t3! r̂ neuŨa
1~ t3!#Ũa

1~ t1!%.
~44!

A more detailed computation of those correlation functio
which are diagonal with respect to the electronic wire qu
tum numbers requires the use of the electron-vibrational s
~energy! representation. Therefore we start to introduce t
representation for the off-diagonal correlation functions
the next section.

Before doing this we note that there exist different a
proaches to handle the correlation functions related to
fourth-order kernel. An intensive study has been carried
for similar functions which one finds if calculating the third
order response functions for a model of two harmo
potential-energy surfaces coupled via an optical transitio41

The restriction to two potential-energy surfaces constitu
by a large set of harmonic oscillators allows to express
correlation functions via the spectral densitiesJmn(v)
5( j (gm( j )2gn( j ))2 d(v2v j ). Here, 22(gm( j )2gn( j ))
gives the~dimensionless! relative displacement of the vibra
tional equilibrium position if statewm or if statewn of the
wire-electrode system is occupied. Such a representation
the spectral densities is particularly useful since experime
with ultrafast optical pulses give direct access to the ti
dependence of the correlation functions. This is differe
from the present study where the entire threefold time dep
dence is removed by integration.

A. Energy representation of the off-diagonal correlation
functions

To introduce the electron-vibrational state representa
we first give the expansion ofCab

(I ) , Eq. ~37!. After a rear-
rangement of the time-evolution operators in the trace
pression one easily obtains@ f th(\v) denotes the thermal dis
tribution, for the definition ofṽmM see Eq.~A7!#

Cab
(I )~ t1 ,t2 ,t3!5 (

K,L,M ,N
f th~\vK!trvib$P̂KP̂bLP̂MP̂aN%

3exp~2 i ~ṽaN2ṽM* !t12 i ~ṽK2ṽM* !t2

2 i ~ṽK2ṽbL* !t3!. ~45!

The trace including projection operators on the various
brational states abbreviates the respective product of vi
tional overlap matrix elements~Franck-Condon factors!. In
the same manner one can rewrite the two remaining exp
sions, i.e., we get

Cab
(II ,od)~ t1 ,t2 ,t3!5 (

K,L,M ,N
f th~\vK!trvib$P̂KP̂bLP̂MP̂aN%

3exp„2 i ~ṽaN2ṽM* !t12 i ~ṽaN2ṽbL* !t2

2 i ~ṽK2ṽbL* !t3… ~46!

and
X-9
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V. MAY PHYSICAL REVIEW B 66, 2454XX ~2002!
Cab
(III ,od)~ t1 ,t2 ,t3!5 (

K,L,M ,N
f th~\vK!trvib$P̂KP̂bLP̂MP̂aN%

3exp~2 i ~ṽM2ṽbL* !t1

2 i ~ṽaN2ṽbL* !t22 i ~ṽK2ṽbL* !t3!.

~47!

B. Energy representation of the diagonal correlation functions

Caa
(II ) and Caa

(III ) include vibrational relaxation within a
single electronic wire state which may result in vibration
equilibrium within this state. Therefore, both trace expr
sions become independent oft2 if this time argument be-
comes larger than a typical vibrational relaxation time.
demonstrate this we first consider the action of the tim
evolution superoperatorUaa . This is done by introducing the
vibrational state representation already used in the foreg
section. We obtain

Uaa~ t2!@Ũneu~ t3! r̂ neuŨa
1~ t3!#

5(
K,L

f ~\vK!exp„2 i ~ṽK2ṽaL* !t3…^xKuxaL&

3Uaa~ t2!@ uxK&^xaLu#. ~48!

To calculate the action ofUaa we reformulateuxK&^xaLu in
such a manner that it corresponds to the initial valuer̂(t2
50;K;aL) of a density operator. Therefore we introdu
5uxK&^xaLu/trvib$uxK&^xaLu% which leads to

r̂~ t250;K;aL!5
uxK&^xaLu
^xaLuxK&

. ~49!

Note that the dependence on the initial-state quantum n
bers has been explicitly given. If one inserts this express
into Eq.~48! and letst2 go to infinity r̂(t2 ;K;aL) changes to
the equilibrium operatorr̂ a and theK,L summation results in
the correlation functionCneu,a(t3), Eq. ~28!. If inserted into
Caa

(II ) , Eq. ~41!, the correlation functionCa,neu(t1), Eq. ~29!,
appears additionally. This indicates the possible compe
tion of the factorized part of the complete fourth-order ker
in the limit t2→`.

For further use, however, we also need the expression
finite t2 where this compensation is incomplete. Therefo
the diagonal partCaa

(II ) of the correlation function which be
longs to the second Liouville space pathway is calculated
more detail. To do this we first give the state representa
of Caa

(II ) , Eq. ~41! @without calculating the action ofUaa(t2)
in detail#,

Caa
(II )~ t1 ,t2 ,t3!5 (

K,L,M ,N,N̄

f th~\vK!u^xKuxaL&u2

3exp„2 i ~ṽaN2ṽM* !t1

2 i ~ṽK2ṽaL* !t3…^xMuxaN&raN,aN̄
2454X
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3~ t2 ;K;aL!^xaN̄uxM&. ~50!

Here we introduced the matrix elementsraN,aN̄(t2 ;K;aL)
5^xaNur(t2 ;K;aL))uxaN̄& of the density operator, Eq.~49!,
if propagated to the finite timet2. The initial condition reads

raN,aN̄~ t250;K;aL!5d N̄,LFdN,N̄1~12dN,N̄!
^xaNuxK&

^xaLuxK& G .
~51!

The density matrix at finitet2 is obtained in solving respec
tive equations of motion which correspond to the tim
evolution superoperatorUaa . According to the relations in-
troduced in Sec. II A we get

]

]t
raN,aN̄~ t;K;aL!52 i ~ṽaN2ṽaN̄

* !raN,aN̄~ t;K;aL!

1dN,N̄(
K̄

GaK̄→aNraK̄,aK̄~ t;K;aL!.

~52!

It separates into diagonal and off-diagonal contributions. T
off-diagonal parts of the density matrix are simply dete
mined whereas the diagonal partPaN(t)5raN,aN(t;K;aL)
follows as the solution of a rate equation describing vib
tional relaxation within the electronic statewa . We write

raN,aN̄~ t;K;aL!5dN,N̄PaN~ t;L !

1~12dN,N̄!raN,aN̄~ t50;K;aL!

3exp„2 i ~ṽaN2ṽaN̄
* !t…. ~53!

Now, we can insert this expression into the correlation fu
tion, Eq. ~50!, to get

Caa
(II )~ t1 ,t2 ,t3!5 (

K,L,M ,N
3 f th~\vK!trvib$P̂KP̂aL%

3exp„2 i ~ṽK2ṽaL* !t3…

3PaN~ t2 ;L !trvib$P̂MP̂aN%

3exp~2 i ~ṽaN2ṽM* !t1!

1~12dL,N! f th~\vK!trvib$P̂KP̂aLP̂MP̂aN%

3exp„2 i ~ṽaN2ṽM* !t12 i ~ṽaN2ṽaL* !t2

2 i ~ṽK2ṽaL* !t3…. ~54!

The first part of the fourfold summation cannot be separa
into two double summations since the populationsPaN de-
pend, via their initial values, onL. A separation is only valid
in the limit t25` where the initial value dependence va
ishes. Nevertheless, we will denote this first part asCaa

(f, II )

~factorized part! whereas the second part will readCaa
(nf,II )

~nonfactorized part!.
In the same manner as explained above we can also

termine the diagonal part of the three-time correlation fu
tions referring to the Liouville space pathway III. It differ
X-10
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ELECTRON TRANSFER THROUGH A MOLECULAR . . . PHYSICAL REVIEW B 66, 2454XX ~2002!
from Caa
(II )(t1 ,t2 ,t3) only with respect to thet1 dependence

whereṽaN2ṽM* has to be replaced byṽM2ṽaN* . Again we
will write Caa

(III )5Caa
(f, III ) 1Caa

(nf,III ) .

C. Complete fourth-order rate

According to the above discussions we separate the c
plete transmission coefficient into a nonfactorized and a
torized part. The first reads

T ab
(nf)~V l ,V r !5E

0

`

dt1dt2dt33@„i ~V r2«a!t12 i ~V l

2V r !t22 i ~V l2«b!t3…Cab
(I )~ t1 ,t2 ,t3!

1exp„i ~V r2«a!t12 i ~«a2«b!t2

2 i ~V l2«b!t3…„da,bCaa
(nf,II )~ t1 ,t2 ,t3!

1~12da,b!Cab
(II ,od)~ t1 ,t2 ,t3!…

1exp„2 i ~V r2«b!t12 i ~«a2«b!t2

2 i ~V l2«b!t3…„da,bCaa
(nf,III )~ t1 ,t2 ,t3!

1~12da,b!Cab
(III ,od)~ t1 ,t2 ,t3!…#1c.c.

~55!

For the factorized part we get

T aa
(f)~V l ,V r !5E

0

`

dt1dt2dt3

3 (
K,L,M ,N

f th~\vK!trvib$P̂KP̂aL%

3@exp„2 i ~V l1ṽK2«a2ṽaL* !t3…1c.c.#

3@PaN~ t2 ;L !2 f th~\vaN!#trvib$P̂MP̂aN%

3@exp„i ~V r1ṽM* 2«a2ṽaN!t1…1c.c.#.

~56!

If we neglect the vibrational contributions, the differen
PaN(t2 ;L)2 f th(\vaN) has to be set equal to zero. Hence
is directly obvious that the factorized part of the transmiss
coefficient vanishes in the absence of electron-vibratio
coupling.

Then, the final expression for the left-right transition ra
can be cast into the following form:

kL→R5E dV ldV rRe(
a,b

Gab
(L)~V l !@T ab

(nf)~V l ,V r !

1da,bT aa
(f)~V l ,V r !#Gba

(R)~V r !. ~57!

The formula makes use of the electrode-wire coupling ra
introduced in Eq.~17! and reads similarly to Eq.~18! where
we already introduced the molecular wire transmission co
ficientsTab . Here, this quantity has been separated into t
parts. The partsT ab

(nf) stem from the nonfactorized fourth
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order kernel and are related to the contribution of pathwa
as well as to the electronic off-diagonal contributions
pathways II and III. The second part of the transmiss
coefficients are diagonal with respect to the electronic qu
tum numbers of the wire and incorporate the electronic di
onal contributions of pathways II and III together with th
contribution of the factorized part of the fourth-order kern

To carry out concrete computations based on Eq.~57! it
remains to carry out the threefold time integration still a
pearing in the formulas forT (nf) and T (f) . Accordingly the
nonfactorized transmission coefficient takes the followi
form:

T ab
(nf)~V l ,V r !52i (

K,M

f th~\vK!

@V r1ṽM* #2@V l1ṽK#

3(
N

^xMuP̂aNuxK&

@V r1ṽM* #2@«a1ṽaN#

3(
L

^xKuP̂bLuxM&

@V l1ṽK#2@«b1ṽbL* #

12i(
L,N

da,b~12dL,N!1~12da,b!

@«b1ṽbL* #2@«a1ṽaN#

3(
K

f th~\vK!^xaNuP̂KuxbL&

@V l1ṽK#2@«b1ṽbL* #

3H (
M

^xbLuP̂MuxaN&

@V r1ṽM* #2@«a1ṽaN#

2(
M

^xbLuP̂MuxaN&

@V r1ṽM#2@«b1ṽbL* #
J . ~58!

The various terms are arranged as follows. The first fourf
summation~with respect to the setsK, M, N, andL of vibra-
tional quantum numbers! corresponds to pathway I ofK (4),
whereas the second fourfold summation relates to pathw
II and III. The elimination of the term withL5N in the part
with a5b indicates that the contribution describing vibr
tional relaxation has been removed. It will appear inT aa

(f) ~see
below!. To have a clear distinction between electronic a
vibrational energies we arranged the wire energies, for
ample, as«a1ṽaM . The vibrational contributionṽaM is
given by the complex quantityvaM2 igaM , which includes
beside the vibrational energiesvaM the level broadening
gaM/2 ~cf. Appendix A!. For both electrodes we setVX

1ṽM (X5L,R). The projection operatorsPaN ~and others!
enabled a compact notation of vibrational overlap integra

In a similar manner we may denote the factorized part
the transmission coefficient
X-11
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T aa
(f)~V l ,V r !54(

K,L
f th~\vK!u^xKuxaL&

3U2Im
1

@V l1ṽK#2@«a2ṽaL* #

3 (
M ,N

E
0

`

dt2@PaN~ t2 ;L !2 f th~\vaN!#U
3^xMuxaN&u2Im

1

@«a1ṽaN#2@V r1ṽM* #
.

~59!

The t2 integral incorporates the~incomplete! compensation
of those parts related to pathways II and III, including vibr
tional relaxation, and the factorized part of the total four
order rate kernel. The integral exists since the vibratio
state populationPaN(t2 ;L) converges to the thermal distr
bution f th(\vaN) independently of the initial population o
the vibrational levelL.

The part ofT aa
(f) which is proportional tof th follows from

the product between the second-order transition rate fro
left-electrode level into the wire and between the transit
rate from the wire to a right-electrode level. Therefore,T aa

(f) is
responsible for the~incomplete! cancellation of the total in-
coherent ~hoppinglike! processes of the electron transf
through the molecular wire as contained in the fourth or
rate. Everything that is basically different from this incohe
ent transfer is contained in the transmission coefficientT (nf),
Eq. ~58!. The first part describes superexchange elect
transfer since it looks similar to Eq.~19!. This expression has
been introduced as the generalization of the simple supe
change transmission coefficient to the inclusion of vib
tional DOF @for a direct comparison with Eq.~19!, inter-
change the vibrational quantum numbersN andK]. But T (nf)

includes vibrational level broadening since we included
brational energy dissipation and dephasing. This ‘‘gene
ized superexchange’’ formula for the transmission coeffici
is supplemented by additional terms which guarantee the
lidity of the formula not only for the case where the molec
lar wire states are far away from the Fermi sea but a
where they are degenerated with it.

Although the derived formula gives a very general a
complete description of the modification of the charge tra
mission through a molecular wire by vibrational DOF, the
are some points that need to be mentioned. First, the
proach is of fourth order with respect to the wire-electro
coupling. Therefore one cannot account for the modificat
of wire levels by the electrode-wire coupling. However,
vibrational motion and relaxation is fast enough higher
ders of the electrode-wire coupling should be of less imp
tance. This case of fast vibrational relaxation involves
described electron transfer mechanism of the type know
electron transfer literature as nonadiabatic transfer. Howe
the fourth-order rate realizes a deviation from the comp
hoppinglike transfer through the wire. It accounts for coh
ence between the electrodes and the wire levels.
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VI. SOME NUMERICAL ILLUSTRATIONS

To underline the importance of vibrational contributio
we compute the transmission factors, Eqs.~58! and ~59!, as
well as the current, Eq.~B8!, for a sufficient simple model of
a molecular wire. In doing so we may choose an arbitr
electronic wire spectrum. However, it seems more appro
ate to consider the wire states of a tight-binding model w
Nmol sites leading to the energy spectrum\«a5E0
12V cosa @a5pn/(Nmol11) andn51, . . . ,Nmol]. The ex-
pansion coefficients of the wire statesuwa& with respect to
the site states readca(m)5A2/(Nmol11)sin(am). Further-
more, we will assume as already indicated in Fig. 1 that
first site of the wire couples to the left electrode and the l
to the right electrode.~If the voltage drop appears at the rig
electrode the model for the wire levels remains valid a
finite applied voltage, too.!

The wire-electrode coupling matrix elements introduc
in Eq. ~4! follow as VLk,a5VLk,1ca(1) and
ca* (Nmol)VNmol ,Rk , which allow us to write Gab

(L)

5ca* (1)cb(1)G (L) and Gab
(R)5ca* (Nmol)cb(Nmol)G

(R). It is
obvious that the newly introduced coupling rates are defi
by the local wire-electrode interaction matrix elements. A
result we may write Eq.~57! as

kL→R5E dV ldV rG
(L)~V l !T~V l ,V r !G

(R)~V r !. ~60!

The total transmission coefficient separates into a nonfac
ized part

T (nf)~V l ,V r !

5Re(
ab

ca* ~1!cb~1!T ab
(nf)~V l ,V r !ca* ~Nmol!cb~Nmol!

~61!

and into a factorized part

T (f)~V l ,V r !5Re(
a

uca~1!ca~Nmol!u2T aa
(f)~V l ,V r !.

~62!

For the further discussion it is appropriate to additiona
separateT (nf) into T (sx) corresponding to Liouville space
pathway I~superexchange contribution, cf. Fig. 4! and into
T (seq) which refers to pathways II and III~sequential contri-
bution!.

Concentrating next on the potential-energy surfaceDUa
is seems to be sufficient to choose them all to be identical
the wire states. This assumption leads to the absence of
horizontal shifts of theDUa one to another, and all the vi
brational statesxaM can be replaced by the single typ
xexcM , referring to the presence of the excess electron in
wire. Those states have to be confronted with the statesxM
[xneuM of the neutral wire. In contrast to the many types
Franck-Condon overlap integrals appearing in Eqs.~58! and
~59! there remains a single type,f FC(M ,N)5^xneuMuxexcN&
@note ^xexcMuxneuN&5 f FC* (N,M ), where in the case o
harmonic-oscillator states the sign * can be removed#. Fur-
X-12
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ELECTRON TRANSFER THROUGH A MOLECULAR . . . PHYSICAL REVIEW B 66, 2454XX ~2002!
thermore, we will concentrate on one or two vibrational c
ordinates with vibrational energy

vM5(
j

M jv j , ~63!

leading to the reorganization energy

El5(
j

\v j@gneu~ j !2gexc~ j !#2. ~64!

To specify the level broadening we take an expression wh
corresponds to a~system-reservoir! coupling function linear
in the reaction as well as the reservoir coordinates. Furt
more, the coupling function should be independent of
state of the wire~neutral or with the excess electron!. There-
fore, the used expression reads~see, e.g., Ref. 31!

gM5(
j

@M j~11n~v j !!1~11M j !n~v j !#g j , ~65!

wheren is the Bose-Einstein distribution andg j denotes a
reference broadening.

As a result the ‘‘superexchange’’ part of the nonfactoriz
transmission coefficient, Eq.~61!, reads

T (sx)~V l ,V r !522Im(
ab

ca* ~1!cb~1!cb* ~Nmol!ca~Nmol!

3 (
K,M

f th~\vK!

V r2V l1vM2vK1 i ~gM1gK!

3(
N

f FC~M ,N! f FC~K,N!

V r2«a1vM2vN1 i ~gM1gN!

3(
L

f FC~K,L ! f FC~M ,L !

V l2«b1vK2vL2 i ~gK1gL!
.

~66!

For the ‘‘sequential’’ part we get

T (seq)~V l ,V r !522 Im(
ab

ca* ~1!cb~1!cb* ~Nmol!ca~Nmol!

3 (
K,M

da,b~12dK,M !1~12da,b!

«b2«a1vM2vK1 i ~gM1gK!

3(
N

f FC~N,M ! f FC~N,K !

3H 1

V r2«a1vN2vK1 i ~gN1gK!

2
1

V r2«b1vN2vM2 i ~gN1gM !J
3(

L

f th~\vL! f FC~L,K ! f FC~L,M !

V l2«b1vL2vM2 i ~gL1gM !
,

~67!
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and the factorized part can be written as

T (f)~V l ,V r !54(
a

uca~1!ca~Nmol!u2

3(
K,L

Im
f th~\vK! f FC

2 ~K,L !

V l2«a1vK2vL2 i ~gK1gL!

3 t̄ rel(
M ,N

Im
~dL,N2 f th~\vN!! f FC

2 ~M ,N!

V r2«a1vM2vN2 i ~gM1gN!
.

~68!

This formula, once it has been compared with Eq.~59!,
needs an additional comment. Instead of thet2 integral con-
taining the difference of the time-dependent vibrational st
population and its asymptotic equilibrium value there a
pearst̄ rel@dL,N2 f th(\vN)#. This is an approximation of the
exact expression and follows if one identifiesPaN(t2 ;L)
in Eq. ~59! with a simple exponentially decaying expre
sion PaN(t25`;L)1@PaN(t250;L)2PaN(t25`;L)#

3exp(2t/t̄rel), with PaN(t25`;L)5 f th(\vN) and PaN(t2
50;L)5dN,L .

If the number of vibrational DOF is reduced to one or tw
reaction coordinates influencing the electron transfer in
entire wire, Eqs.~66!–~68!, are ready for a direct numerica
computation. It should be underlined here, however, that
is not the complicated formulation of the possible direct r
computation via a numerical propagation of the density m
trix ~feasible at least for the case of two vibrational DOF!.
Since we are interested in the time asymptotics~stationary
case! this would be hardly accessible by a direct propagat
~see e.g., Ref. 31!.

A. Transmission coefficients

In the following, the partsT (sx)(V l ,V r), T (seq)(V l ,V r),
and T (f) (V l ,V r) of the total transmission coefficientT
5T (sx)1T (seq)1T (f) are presented as quantities depend
on the energy\V l of the incoming electron~from the left
electrode! and on the energy\V r of the outgoing electron
~to the right electrode, see Fig. 5 as a first example!. The
transmission remains elastic ifV l5V r . Such processes ar
contained in theV l5V r stripe extending in the graphica
representation of the transmission coefficients from
lower-left to the upper-right corner@see Fig. 5 and the fol-
lowing ~Fig. 6!; note that we use the term ‘‘stripe’’ instead o
‘‘line’’ to account for the lifetime broadening of all electron
vibrational levels#. The part of theV l-V r plane whereV l
.V r ~above theV l5V r stripe! corresponds to transmissio
processes in which the incoming electron loses ene
whereas it gains energy from the vibrational DOF forV r
.V l ~below theV l5V r stripe!. The superexchange mech
nism of electron transmission should dominate forV l ,V r
@va whereas the sequential transfer would become of so
importance ifV l ,V r'va . To have a proper graphical rep
resentation of the transmission coefficients the energy s
has been chosen in such a way that the energyE0 ~site en-
ergy of the wire elements! equals zero. The energy depe
X-13



on

r
he
i

to
th

r a

g
t
d

o
ce

o
the

-

ire
or-

on

r

,
t

s,

V. MAY PHYSICAL REVIEW B 66, 2454XX ~2002!
dence of the coupling ratesG (L)(V l) and G (R)(V r) will be
responsible for thoseV l-V r regions which contribute to the
total transition rate, Eq.~60!. In this mannerG (L)(V l) may
define an upper limit for the energy of the incoming electr
whereasG (R)(V r) fixes a lower limit for the energy of the
outgoing electron. However, we will not consider this pa
ticular influence of the coupling rates but will analyze t
whole V l-V r dependence of the transmission coefficients
drawing this quantity versus an appropriate part of theV l-V r
plane.

The discussion will be carried out in two ways. First,
have a model which is simple enough to demonstrate
influence of the electron-vibration coupling we conside
two-level wire~stemming from a two-site system!. Here, we
can study how the vibrational parameters~electron-
vibrational coupling strength, vibrational level broadenin
vibrational frequency distribution! determine the differen
types of transmission coefficients. As a more realistic mo
a six-level wire model is used in a second part.

Figure 5 shows the superexchange contributionT (sx), Eq.
~66!, and the sequential contributionT (seq), Eq. ~67!, to the
total transmission coefficient for the absence of any electr
vibrational coupling. This case is achieved if the displa

FIG. 5. Reference electron transmission coefficients of a m
lecular wire with two electronic levels versus the energy of
incoming electron\V l5El ~from the left electrode!, versus the
energy of the outgoing electron\V r5Er ~into the right electrode!,
and for the absence of electron-vibrational coupling.El andEr are
given in meV and the transmission coefficients in 1/meV3. The
parameters used for the calculations areE050, V5100 meV,
\vvib540 meV, \gvib54 meV, t̄ rel51/2gvib , background line
broadening is 2 meV, andgneu2gexc50. Room-temperature condi
tions have been chosen.~a! Superexchange partT (sx). ~b! Sequen-
tial part T (seq) @note the different scale compared toT (sx)].
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FIG. 6. Electron transmission coefficients of a molecular w
with two electronic levels modulated by a single vibrational co
dinate versus the energy of the incoming electron\V l5El ~from
the left electrode! and versus the energy of the outgoing electr
\V r5Er ~into the right electrode!. El andEr are given in meV and
the transmission coefficients in 1/meV3. The parameters used fo
the calculations areE050, V5100 meV, \vvib540 meV, \gvib

54 meV, t̄ rel51/2gvib , background line broadening is 2 meV
gneu2gexc51, and thermal energy is 1 meV.~a! Superexchange par
T (sx). ~b! Sequential partT (seq). ~c! Factorized partT (fac). ~d! Total
transmission coefficient.~To compute the transmission coefficient
the inclusion of ten vibrational levels appeared to be sufficient.!
X-14
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ELECTRON TRANSFER THROUGH A MOLECULAR . . . PHYSICAL REVIEW B 66, 2454XX ~2002!
ments are removed between the PES belonging to the
and those belonging to the electrodes (gneu5gexc and thus
El50; all other parameters used in the calculation are gi
in the figure captions!. As a result all vibrational overlap
integrals reduce to Kronecker’sd function, but vibrational
level broadening remains, resulting in the line broadening
the transmission factor. In particular, the transmission fac
corresponding to the factorized part of the complete quan
vanishes@this can be easily clarified in writing Eq.~68! for
gneu5gexc]. In contrast,T (sx) shows forV l5V r two peaks
corresponding to the two wire levels. The same behavio
obtained forT (seq) shown in Fig. 5~b!. But there are two
additional peaks forV lÞV r following from inelastic transi-
tions caused by the coupling to the environmental DO
Once this coupling is removed~vanishing vibrational level
broadening! all these peaks disappear which can be ea
confirmed by an analysis of Eq.~67!. Note also thatT (seq)

shown in Fig. 5 is nearly two orders-of-magnitude smal
thanT (sx). As expected,T (sx) dominates the transmission co
efficient if the electron-vibrational coupling is absent.

Like in Fig. 5 we will also observe in the following fig
ures regions in theV l-V r plane where the complete tran
mission coefficient becomes negative. Although these ne
tive contributions may be compensated once the total r
Eq. ~60!, has been calculated, they indicate an ill-defined r
expression. But it is well known how to overcome this pro
lem ~see, e.g., Refs. 33 and 45!. Instead of calculating rate
expressions one has to determine the complete memory
nel of the GME, Eq.~B3!, which now has to be used t
determine the electronic level populations.~The importance
of an improved iteration of the rate expressions has been
underlined in Ref. 45.! In particular, the possible importanc
of memory effects indicates that electron-vibrational coh
ence is present, and, following from this, that the electr
vibrational dynamics proceed in a region beyond a pure h
ping transfer.

FIG. 7. Total electron transmission coefficient of a molecu
wire with two electronic levels modulated by a single vibration
coordinate versus the energy of the incoming electron\V l5El

~from the left electrode! and versus the energy of the outgoin
electron\V r5Er ~into the right electrode!. El andEr are given in
meV and the transmission coefficients in 1/meV3. The parameters
used for the calculations areE050, V5100 meV, \vvib

540 meV,\gvib54 meV, t̄ rel51/2gvib , background line broaden
ing is 2 meV,gneu2gexc51.5, and thermal energy is 1 meV.
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The influence of the coupling to a single vibrational mo
is shown in Fig. 6. For the chosen value of the electro
vibrational coupling strength~reorganization energy is 0.0
eV! the superexchange part ofT is reduced by one order o
magnitude compared to the case of vanishing electr
vibrational coupling but shows a reacher structure in
V l-V r plane. And the sequential and factorized parts beco
of some importance. If the electron-vibrational coupling
further increased all transmission coefficients are reduced
ditionally as demonstrated in Fig. 7. For the considered
ample the reorganization energy, Eq.~64!, amounts to 0.09
eV and the transmission coefficient shows different vib
tional satellites of the two main peaks. They are position
not only on theV l5V r stripe but also outside, demonstra

r
l

FIG. 8. Total electron transmission coefficient of a molecu
wire with two electronic levels modulated by two vibrational coo
dinates versus the energy of the incoming electron\V l5El ~from
the left electrode! and versus the energy of the outgoing electr
\V r5Er ~into the right electrode!. El andEr are given in meV and
the transmission coefficients in 1/meV3. The parameters used fo
the calculations areE050, V5100 meV, low-frequency vibration
\v low58 meV, high-frequency vibration\vhigh580 meV, level

broadening equal for both modes,\gvib52 meV, t̄ rel51/2gvib ,
background line broadening is 1 meV,g(low)neu2g(low)exc51.5,
g(high)neu2g(high)exc51, and thermal energy is 20 meV.

FIG. 9. Total electron transmission coefficient of a molecu
wire with six electronic levels modulated by a single vibration
coordinate versus the energy of the incoming electron\V l5El

~from the left electrode! and versus the energy of the outgoin
electron\V r5Er ~into the right electrode!. El andEr are given in
meV and the transmission coefficients in 1/meV3. The parameters
used for the calculations areE050, V5100 meV, \vvib

540 meV,\gvib54 meV, t̄ rel51/2gvib , background line broaden
ing is 2 meV,gneu2gexc51, and thermal energy is 1 meV.
X-15
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V. MAY PHYSICAL REVIEW B 66, 2454XX ~2002!
ing the importance of inelastic electron transmiss
channels.42 Obviously the satellite structure becomes mo
complex if the transferred electron is coupled to two vib
tional modes as can be seen in Fig. 8. A somewhat m

FIG. 10. Current-voltage characteristics of the wire discusse
Fig. 7 ~the case of symmetrically applied voltage;E0 has been taken
0.5 eV above the Fermi edge in the unbiased case!. ~a! Fourth-order
reduced current according to Eq.~70! ~full line, \gvib58 meV,
gneu2gexc52, all other parameters as in Fig. 7!, ‘‘superexchange’’
contribution j (sx) ~dashed line!, ‘‘sequential’’ contribution j (seq)

~long-dashed line!, and ‘‘factorized’’ contributionj (f) ~dotted line!.
~b! Reduced second-order currentI /eG0 ~full line! and reduced tota
current I /eG0 according to Eq. ~69! @long-dashed line:\G0

510 meV, dashed line:\G055 meV, dotted line:\G051 meV,
all other parameters as in~a!#. ~c! Reduced total currentI /eG0

according to Eq.~69! @\G055 meV; full line: gneu2gexc52 (El

5160 meV); long-dashed line: gneu2gexc51.8
(El5130 meV), dashed line:gneu2gexc51.5 (El590 meV); dot-
ted line: gneu2gexc51 (El540 meV), all other parameters a
in part ~a!#.
2454X
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realistic wire model is used in Fig. 9 showing the transm
sion coefficient for a six-level wire.

All given examples demonstrate the capability of the ch
sen approach to compute the left–right electron transmis
ratekL→R , and they underlined the importance of an inela
tic electron transmission. The influence of these inela
contributions on aIV characteristic of a molecular wire ar
demonstrated in the last part.

B. Current-voltage characteristics

As a first application of the formalism presented so far
compute the current-voltage characteristics for the refere
case of a two-site wire modulated by a single vibration
coordinate and in the presence of a symmetrically app
voltage ~the wire levels stay at their zero-bias position!.
Since we are mainly interested in effects originated by
vibrational coordinate it suffices for the following to reduc
the frequency dependence of the coupling rates@cf. Eq. ~60!#
to that of the Fermi distribution, i.e., we setG (X)(v)
5G0f X(v) where G05uV/\u2N depends on the constan
transfer-matrix elementV and the constant electrode dens
of statesN ~remember also the neglect of wire-level reno
malization due to the presence of the electrode states!.

If the approximation taken forG (X)(v) is also introduced
into the second-order rate expressions the entire current
lows as@cf. Eq. ~B8!#

I /eG05 j (II )1G0 j (IV). ~69!

j (II ) denotes the expression which is obtained from seco
order electrode-wire coupling contributions. It is easily d
rived when using the formulas of Sec. IV@and Eq.~B8!#. The
fourth-order reduced currentj (IV) reads

j (IV)5E dV1dV2T~V1 ,V2!$ f Fermi~\V12eV/2!

3@12 f Fermi~\V21eV/2!#2 f Fermi~\V11eV/2!

3@12 f Fermi~\V22eV/2!#%. ~70!

According to the separation of the transmission coeffici
into the various contributions, Eqs.~66!–~68!, the fourth-
order current can be split into the ‘‘superexchange,’’ the ‘‘s
quential,’’ and the ‘‘factorized’’ contributionsj (sx), j (seq), and
j (f) , respectively. Their dependence on the~symmetrically!
applied voltage is shown in Fig. 10~a!. The parameters use
refer to the transmission coefficients presented in Fig.
However, a somewhat larger vibrational level broaden
and a larger reorganization energy has been taken. Moreo
the factorized part of the fourth-order transmission coe
cient, Eq.~59!, is determined in solving numerically the ra
equation for the vibrational level populationsPaN(t). Even
this factorized partj (f) dominates the total fourth-order cu
rent, although the superexchange contribution should be
vored since up to a bias of 0.8 V the wire levels are out
resonance with the occupied electrode levels.

The voltage dependence of the second-order contribu
j (II ) can be found in Fig. 10~b!. To get the total~reduced!
currentI /eG0, Eq. ~69!, we have to fix the quantity\G0 to a

in
X-16
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range less than 10 meV.43 As can be seen just in this wea
electrode–wire coupling case the second-order contribu
is remarkablly modified by the fourth-order one. A detail
inspection of the wayj (II ) and j (IV) are influenced by the
electron-vibrational coupling indicates the dominance of
fourth-order contribution. Finally, for the intermediate val
\G055 meV the total current is drawn in Fig. 10~c! depen-
dent on the electron-vibrational coupling strength. The
crease of the current with an increase of the electr
vibrational coupling for the range of resonant transitio
from the left electrode into the wire levels is obvious.

VII. CONCLUSIONS

A comprehensive theory of inelastic electron transmiss
through molecular wires has been offered in the present
per. The description is based on a consequent inclusion o
electron-vibrational coupling, considers vibrational ene
relaxation and dephasing, and accounts for coherence in
course of the transfer. The theory ends up with a rate eq
tion ~possibly including memory effects! for those electronic
state populations which are of relevance for the elect
transmission. Since the rate expressions are given as a p
expansion with respect to the wire–electrode coupling
description is beyond a simple ‘‘Golden Rule’’ approac
Calculating the electrode-wire-electrode transfer rate in
fourth order with respect to the wire-electrode coupling
lows to generalize standard expressions for the wire tra
mission rate to the inclusion of inelastic-scattering event
the vibrational quanta of the wire. On one hand, there
pears a simple modification of the pure electronic rate f
mula by augmenting the involved electronic levels via t
addition of the vibrational level manifold. But there are fu
ther contributions to the rate which guarantee the validity
the rate formula also when the wire levels come into re
nance with the electrode levels. All contributions to t
transfer rate could by classified via the so-called Liouv
space pathways. The feasibility of the approach could
demonstrated by some first calculations of current-volt
characteristics concentrated in a two-level wire and a s
metrically applied voltage. And indeed, a pronounced
crease of the current with an increase of the electr
vibrational coupling has been found.

Although the presented numerical calculations are
stricted to the case of a single and of two vibrational coor
nates the approach may account for an arbitrary large n
ber ~if the three-time correlation functions are calculat
using the spectral densities of the vibrational coordinat!.
Furthermore, the description can directly be tied to quant
chemical calculations of the adiabatic wire levels and on
spective potential-energy surfaces. And as a third dire
possible extension we refer to a renunciation of the sim
model of a symmetrically applied voltage. More involve
descriptions are known which, already on the level of
used simple tight-binding description of the wire, may allo
for a self-consistent formulation of the voltage drop acro
the wire.17 ~All these questions are undergoing study a
results will be published in the near future.!

Of more basic importance would be the inclusion of t
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wire-level renormalization due to the wire-electrode co
pling. In fact it becomes possible to combine the very e
cient projection operator approach which accounts
electron-vibrational couplings with infinite-order conside
ations of the wire-electrode coupling.29 Such considerations
will extend considerably the validity of the approach giv
here.
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APPENDIX A: DISSIPATIVE PART OF THE DENSITY
OPERATOR EQUATIONS

In the following a detailed expression for the dissipati
superoperatorD introduced in Eq.~12! will be given. To
simplify the considerations and since details of vibration
relaxation are of less importance for the considerations
this paper we apply the well-known secular approximat
which in operator notation is given by the so-called Lindbl
type of dissipative superoperator~see, for example, Ref. 44!

2Dr̂52(
A

$ 1
2 ~LALA

1 ,r̂ !12LA
1r̂LA%. ~A1!

The new operators readLA
15 l mM→mN

1 P̂m with the projector

on the electronic statesP̂m , Eq. ~21! ~remember thatm cov-
ers all involved electronic levels!, and with l mM→mN

1

5AGmM→mNuxmN&^xmMu. The latter quantity generates tran
sitions from the vibrational statexmM to the statexmN . How
to compute the respective transition rateGmM→mN has been
well documented in the literature and should not be repea
here ~see, e.g., Ref. 31!. For further purposes we introduc
ĝm5(M ,Nl mM→mNl mM→mN

1 which becomes identical to

ĝm5(
M

2gmMuxmM&^xmMu ~A2!

with the electron-vibrational level broadening~inverse life-
time! gmM5(NGmM→mN/2. Accordingly the dissipative par
of the density operator equation is written as

2Dr̂52S 1
2 (

m
ĝmP̂m ,r̂ D

1

1(
m

(
M ,N

l mM→mN
1 P̂mr̂~ t !P̂ml mM→mN . ~A3!

In Sec. V we need the solution of the density operator eq
tion exclusively defined byL0, Eq. ~12!. It can be formally
written as

r̂~ t !5U0~ t,t0!r̂~ t0!, ~A4!

where the time-evolution superoperatorU0 has been intro-
duced. Taking the matrix elementsr̂mn5^wmur̂uwn&, which
just define operators in the state space of the active vi
tional coordinates, we may write
X-17
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r̂~ t !5U0~ t,t0!(
m,n

r̂mn~ t0!uwm&^wnu

5(
n,m

uwm&^wnu@dm,nUmm~ t,t0!r̂mm~ t0!1~12dm,n!

3Ũm~ t2t0!r̂mn~ t0!Ũn
1~ t2t0!#. ~A5!

The time propagation of the density operator differs depe
ing on the concrete type of matrix elements, i.e., if the di
onal or off-diagonal elements are affected.Umm solves the
vibrational density operator equation diagonal in the el
tronic quantum number whereasŨm generates the time
propagation of the off-diagonal elements. It is given as
generalized time-evolution operator including dissipation

Ũm~ t !5expS 2
i

\ S \vm1Hm2
i\

2
ĝmD t D . ~A6!

For further use we will split off the part including«m , write
exp(2«mt)Ũm(t) instead ofŨm(t), and introduce

ṽmM5vmM2 igmM . ~A7!

Once Ũm(t) has been expanded with respect to t
vibrational eigenstates ofHm it simply reads Ũm(t)
5(Mexp(2iṽmMt) uxmM&^xmMu.

APPENDIX B: THE GME FOR THE STATE
POPULATIONS

According to the projection operator approach briefly e
plained in Sec. III B we give here some details on the de
vation of a GME valid for the total electronic level popul
tions. It is based on the equation of motion~9! for the
reduced density operator, Eq.~7!, of the electron-vibrationa
system.

In a first step we will derive the Nakajima-Zwanzig ide
tity for Pr̂, whereP denotes the projection superopera
defined in Eq.~20!. The introduction ofP and the orthogona
complement,Q512P, into the density operator Eq.~9!

leads to a separation into two equations, one obeyed byPr̂

and one byQr̂. Taking the solution of the equation forQr̂

including the assumptionQr̂(t0)50 and introducing the
time-propagation superoperator

U~ t !5exp$2 iQLt%, ~B1!

a closed equation forPr̂ results~Nakajima-Zwanzig iden-
tity!:

]

]t
Pr̂~ t !52 iPLPr̂~ t !2E

t0

t

d t̄ PLU~ t2 t̄ !QLPr̂~ t̄ !.

~B2!

Using Eq.~22! it is possible to derive the related equations
motion for the state populations.

Next we note the important propertiesPL05L0P50 and
PLVP50. Both relations are simply verified using the de
2454X
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nition of the projector and taking into account thatH0 and
the dissipative part is diagonal with respect to the electro
states, whereas the transfer coupling has only off-diago
contributions.

For a further simplification we note trvib$^wmuPLÔuwm&%
5trvib$^wmuLVÔuwm&%, where Ô has to be identified with
respective parts of both terms on the right–hand side of
~B2! @Ô5Pr̂(t) as well asÔ5U(t2 t̄ )QLPr̂( t̄ )]. If we
replaceÔ by Pr̂, we easily verify that this term vanishe
The replacement ofÔ by U(t2 t̄ )QLPr̂( t̄ ) leads to the
memory kernel of the GME valid for the electronic sta
populations,

]

]t
Pm~ t !5(

n
E

2`

`

dt Mmn~t!Pn~ t2t!. ~B3!

Here, we already changed fromt̄ to t5t2 t̄ and combined
the memory kernel with the unit-step functionQ(t). Fur-
thermore, a trace with respect to the complete active sys
DOF has been introduced to get

Mnm~ t !52Q~ t !tr$P̂nLVU~ t !QLVPP̂m%. ~B4!

Additionally, it was possible to rewriteQLr̂ nP̂n , since we
noted the relation r̂ mP̂m5PP̂m and wrote QLPP̂m

5QLVPP̂m5LVPP̂m .
Equation ~B4! will be the starting point for all further

considerations. It has been already derived in Refs. 32
33 ~and discussed more recently in Ref. 31 and 45–4!.
Here, a generalization is given by taking into account vib
tional dissipation via the coupling of the reaction coordina
~active vibrational coordinates! to other thermalized vibra-
tional DOF.

If the memory effects in the GME are of less importan
one can change to a standard rate Eq.~13!, where the tran-
sition rateskm→n are given by the zero-frequency Fouri
transform ofMnm , i.e., we get

km→n5Mnm~v50![2 i tr$P̂nLVQG~v50!QLVPP̂m%.
~B5!

The Green’s superoperatorG(v) is introduced by noting
QL5L01QLV leading to the following notation for the
time-propagation superoperator, Eq.~B1!, U(t)5exp$2i(L0
1QLV)t%. This expression enables us to formally compu
the one-sided Fourier transform of the time-propagation
peroperator (e→10):

E
0

`

dt eivtU~ t !5 i ~v2L02QLV1 i e!21[ iG~v!.

~B6!

Before introducing a power expansion ofMnm we give a
formula for the stationary current through the wire based
the GME, Eq.~B3!, and used in Sec. VI B for concrete com
putations.
X-18
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ELECTRON TRANSFER THROUGH A MOLECULAR . . . PHYSICAL REVIEW B 66, 2454XX ~2002!
1. Expression for the stationary current

In the stationary case and at an applied voltage as sh
in Fig. 1~b! the stationary currentI may be obtained from

I[I L52e
]

]t (
k

PLk~ t !. ~B7!

As is well known the time derivative of the electro
population has to be replaced by the right-hand side
the respective rate equation. Assuming station
conditions, the nonlocal expressions in Eq.~B3! reduce to
(nMmn(v50)Pn

(stat), where Pn
(stat) denotes the stationar

population of leveln ~the Fermi distribution in the case o
the two electrodes!. Then it is easy to show that the follow
ing current formula becomes valid:

I /e5kL→R2kR→L1(
a

kL→aka→R2kR→aka→L

ka→L1ka→R
.

~B8!

The concentration on stationary conditions automatically
fines the current via the zero-frequency memory kernels,
~B5!, i.e., by the ordinary rate expressionskm→n . The first
term on the right-hand side of Eq.~B8! is given by direct
left-right and right-left transitions which are of fourth ord
with respect to the electrode-wire coupling. The second te
in the above current formula includes all those rates conn
ing one of the electrodes with one of the wire levels. Tho
rates, as well as the whole contribution to the current, are
second order with respect to the electrode-wire coupling.
respective expression for the current has been used rec
in Ref. 28 to describe charge motion through C60 molecules.
@However, the approach neglected any formation of coh
ence described by the first term in Eq.~B8! and considered
the vibrational assisted tunneling of the electron through
C60 molecule and vibrational relaxation separately.#

2. Perturbational expansion of the memory kernel

The power expansion ofMnm with respect toLV can be
achieved by establishing an equation of motion forG(t).
From Eq. ~B6! we can deduce the equation (G 0

21(v)
2QLV)G(v)51 where a zero-order Greens superopera
has been defined according to (v1 i e2L0) G0(v)51. Mul-
tiplication by G0(v) leads to a superoperator version
the ubiquitous Dyson equation G(v)5G0(v)
1G0(v)QLVG(v). If rearranged it gives a solution forG(v)
in terms ofG0(v) andQLV ,

G~v!5(
j 50

`

~G0~v!QLV! jG0~v!. ~B9!

This expansion is inserted into Eq.~B5! ~where we finally
can restrict ourselves to even powers ofLV). Let us concen-
trate on the pure superoperator part first,

LVQG~v!QLVP5(
j 50

`

LVQ~G0~v!QLV! jG0~v!QLVP.

~B10!

One may use this formula but can also change to a fo
where the projectorQ is not combined withLV but with G0.
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First, we considerU0(t)5exp(2iL0t) and get PU0(t)
5U0(t)P5P, which gives QU0(t)5U0(t)Q5U0(t)2P
[QU0(t)Q. If changed to the Green’s operatorG0(v) it
reads~note that the Fourier transform of the unit-step fun
tion appears here! QG05G0Q5QG0Q[G̃0 with

G̃0~v!5G0~v!2
1

v1 i e
P. ~B11!

Accordingly, the more symmetric version of Eq.~B10! is
obtained as

LVQG~v!QLVP5(
j 50

`

LV~ G̃0~v!LV! j G̃0~v!LVP.

~B12!

If combined with the two projection operatorsP̂m and P̂n
the resulting frequency-dependent memory kernel reads

Mnm~v!52 i (
j 50

`

tr$P̂nLV~ G̃0~v!LV!2 j 11PP̂m%.

~B13!

FIG. 11. Liouville space pathways describing different contrib
tions to the memory kernel, Eq.~B13!, which refers to the time
evolution of the density operator for a transition from statem51
~upper-left corner! to staten5N ~lower-right corner!. The circle
with 11 stands for the elctronic part of the initial value of the de

sity operatorr̂(t)50)5 r̂1,1uw1&^w1u[r 1)̂1. If G̃LV is applied the
action of the respective coupling Hamiltonian may produce den
operators with an off-diagonal electronic part, e.g.,r̂1,2uw1&^w2u
and r̂2,1uw2&^w1u. These new density operators are affected by

Green’s superoperatorG̃ which corresponds to a dissipative tim
evolution if translated from the frequency to the time domain.
this manner one proceeds further up to the point where the den
operator r̂N,N21uwN&^wN21u or r̂N21,NuwN21&^wNu has

been generated@2(N21) 2onefold application ofG̃LV.) What re-
mains is the final application ofLV leading tor̂N,NuwN&^wNu. The
resulting rate expression incorporates the 2(N21)th power of the
coupling operator. It is obvious that the propagation to the fi
form of the density operator can be achieved in different ways,
by going along different Liouville space pathways.
X-19
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This expression serves as a starting point for the consi
ation of all types of charge-transfer processes through
wire. A graphical representation of Eq.~B13! via so-called
s
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a detailed explanation are given Fig. 11.
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