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Electron transfer through a molecular wire: Consideration of electron-vibrational coupling
within the Liouville space pathway technique
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To fully account for electron-vibrational coupling and vibrational relaxation in the course of electron motion
through a molecular wire a density operator approach is utilized. If combined with a particular projection
operator technique a generalized master equation can be derived which governs the populations of the elec-
tronic wire states. The respective memory kernels are determined beyond any perturbation theory with respect
to the electron-vibrational coupling and can be classified via so-called Liouville space pathways. An ordering
of the different contributions to the current-voltage characteristics becomes possible by introducing an electron
transmission coefficient which describes ballistic as well as inelastic electron transport through the wire. The
general derivations are illustrated by numerical calculations which demonstrate the drastic influence of the
electron-vibrational coupling on the wire transmission coefficient as well as on the current-voltage character-
istics.
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[. INTRODUCTION zation of the Landauer theory. An approach based on the
Su-Schrieffer-Heeger model was used in Refs. 23, 25, and
It is an old dream of molecular electronics to handle27, whereas the Redfield theory could be applied in Ref. 26
single molecules as active elements of nanoscale electrisee also Ref. )5A treatment which incorporates the cou-
circuits}~* Meanwhile, is became possible to attache micro-Pling to a single vibrational mode in an exact way has been
electrodes to single molecules and to study their conductivitpresented in Ref. 28. But it neglects electronic coherences
as well as to derive related/ characteristicgsee, for ex- Which are pf importance if one takes a description beyond a
ample, Refs. 5-7, and the recent overview in Ref.This  Pure hopping transfer. _
experimental progress initiated a number of theoretical stud- Of course such treatments are of interest whenever the

ies aimed at reproducing measurad characteristicscom- CO“P”UQ of the wire levels to the continuum of electrc_)de
pare Refs. 9—13, and references therein as well as the revie jptes Is weak enough. In th? contrary case the broadening of
papers of.Refs '14 and 15 the wire levels by the coupling to the electrode levels may

: T dominate the transmission. This would be the case if chemi-
Suph studies concern an accurat.e cla33|f|pat|on and Congbrption of the wire to the electrode atoms appears, for ex-
putation of all molecular wire levels involved in the electron ample, to be observed for paradithiohydroquinone on a gold
trapsfer. Furthermore it is of great mtgrest to understand IRlectrode and is described in Ref(se also the computation
which manner the coupling of the wire to the electrodespy Ret. 13. If the wire is noncovalently attached to the elec-
modifies the wire states. This may concern short-range COUrode (as is the case for the DNA strands studied in Ref. 5
plings defined by the concrete type of chemical bésee,  this continuum-induced broadening should be less dominant
e.g., Refs. 12 and 16But also long-range Coulomb effects and inelastic effects of the electron transmission within the
can come into play, which in the most simple case are acwire may have a noticeable influence. Or in other words, if
counted for via so-called mirror charge effetts®The pres-  the wire-level broadening due to the coupling to electrode
ence of the applied voltage may change the molecular orbitevels becomes smaller than characteristic vibrational ener-
als of the wire in a manner which should be determinedgies the latter may determine all thé characteristics of the
self-consistently during the computation of the orbitals andwire. It is just this case we will concentrate on in the follow-
which decides on the voltage drop over the wit&ut it also  ing. (An approach which accounts for both effects, wire-level
decides whether the electron transfer through the wire is &roadening and formation of vibrational substates, will be
single-electron transfer or if two or more electrons are in-given elsewheré®) In particular we will profit from the
volved simultaneouslf+1820-2 theory describing electron transfer through molecular donor—

It is typical for all these approaches that the electron conacceptor complexes

duction of the wire is described as the result of a completely From standard electron transfer theory the importance of
ballistic transport characterized by the transfer rate,r ~ the proper description of electron-vibrational coupling is ob-
from the left to the right electrod@ee also Sec. lll AHow-  vious (see the excellent overviews in Ref.)3th the frame-
ever, a number of recent computations aimed to includevork of this theory the mentioned ballistic transport is
inelastic-scattering processes of the transferred electron &hown as superexchange electron transfer. For the present
molecular vibration$?>=2 The case of very slow vibrations example the superexchange mechanism dominates charge
where the electron-vibrational coupling can be handled asotion when the wire levels to be occupied by the trans-
static disorder has been discussed in Ref. 22. In Ref. 2ferred electronthe adiabatic lowest unoccupied molecular
electron-vibrational coupling was embedded into a generalierbital (LUMO) levelg are far away from the electrode lev-
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counts for both types of electron transfer mechanisms as well
as the transition regime between them.

A unifying description of all electron transfer mechanisms
— J— is achieved when starting with a density-matrix theory for-
mulated in the properly chosen electron-vibrational states
(cf, e.g., Ref. 31 The complete set of density-matrix ele-
ments is of interest if, for example, optical experiments on
R so-called ultrafast electron transfer are considered. In the

present case diV characteristics, however, one only needs

(a) the net current of charge transfer through the wire, and it
suffices to calculate the total electronic state populations.
Such a description of electron transfer has been already
given in Refs. 32 and 33 for two- and three-site systems. It

directly leads to(generalizeyl rate equations for the elec-
tronic state population and simultaneously accounts, via re-
E spective rate expressions, for the superexchange and sequen-
a tial mechanisms.

EF Here such a density-matrix treatment of electron transfer
reactions will be adopted to account for inelastic contribu-

E tions to the entire electron transport through molecular wires.

I F This is done by including vibrational degrees of freedom

(DOF), considering relaxation of the active vibrational coor-
dinates(the reaction coordinatgsand utilizing techniques of
dissipative quantum dynamiés3*%° As a result(general-
ized) rate equations for the electronic state population can be
derived where the rate expressions are given as an expansion
with respect to the electrode-wire interaction matrix ele-
ments, but incorporates electron-vibrational coupling in an
exact way. The type of the expansion to be used can be
classified by so-called Liouville space pathwdy#\ccord-
E ing to the mentioned expansion the rates account for elec-
E a tronic and vibrational coherence, and in this manner they are
F well beyond simple hopping rates for electrode-wire transi-
tions. In a certain limit the approach reproduces standard
EF formulas for the electron transmission through a molecular

I wire (see, e.g., Ref. 15

Since the present paper mainly focuses on the general

scheme for the incorporation of electron-vibrational coupling

(b) into the studies of charge motion through molecular wires we

use the simple model for the wire-electrode system as given

FIG. 1. (8 Scheme of a molecular wire embedded between an Fig. 1. We assume that the wire electronic states and all
left (L) and right(R) microelectrode(b) Energy-level scheme of relevant types of vibrations are given quantities and that their
the electrode—molecular-wire—electrode system(af The dark  dependence on the applied voltage as well as the voltage

part of the left and right electrodes stands for the Fermi sea. Thelrop across the wire is known. Intrawire coupling may be
block in the middle gives the set of adiabatic states of the wireassumed either to be strong or very weak. In the latter case
realized if the wire is populated by a single excess electron. Voltag@\,ery wire level can be described as a level being decoupled
bias is chosen to have a resulting electron motion from the left tgrom the others. In the first case, i.e., when the wire internal
the right. Upper part: Wire levels are far away from the Fermiyg|axation should be fast compared to the electron motion a

energies(scheme of superexchange electron transteswer part:  harmal equilibrium among the different levels can be pro-
Wire levels positioned in the region of the Fermi energgsheme vided

of hoppinglike electron transfer The paper is organized as follows. In the next section the

model together with the basic density-matrix treatment is
els(see the upper part of Fig).lin contrast, the transfer may given. The derivation of rate equations for the complete elec-
proceed as a hoppinglike procesequential electron trans- tronic state population&f the two electrodes and the adia-
fer) if the wire levels are positioned near the energies of thébatic wire statelsand related electron transfer rates up to the
electrode levels. If the applied voltage is increased one mafourth order with respect to the electrode-wire coupling are
change from one type of electron transfer to the other. Obviexplained in Sec. Ill. Numerical illustrations can be found in
ously, within a singlelV characteristic both mechanisms Sec. VI. Based on a regular tight-binding model the wire
may act and a comprehensive theory is required which acstates are introduced and the various contributions to the
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The Hamiltonian which describes the vibrational dynam-
ics of the neutral wirg(if the excess electron is absgns
written asH . It will be combined with the band energies
Exx=nex (X=L,R). Consequently, the electrode Hamil-

U tonian reads
a
Uneu HXIEK: (hrexic Hned | @xi){ xul - ()]
U For further use we introduce states, wherem should com-
o prise the wire electronic quantum numbaras well as those

of the two electrodes, i.e. Xk).

All vibrational Hamiltonians introduced so far are defined
EF with respect to the se@@={Q;} of active vibrational coordi-
nates(see the scheme in Fig).2At present there is no chance
for anab initio calculation of potential-energy surfaddg of
the wire. Therefore, one has to make reasonable assump-
tions, from which the most basic provides surfaces for un-
coupled harmonic vibrations where the equilibrium position
has been shifted depending on the actual electronic state the

FIG. 2. Potential-energy surface scheme of the electrode-wireEXCeSS electron occupie@oss!bly, the adiabatic levels may
electrode system of Fig. 1. For the left electrode only thosd?® connected by nonadiabatic couplings,.) The vibra-
potential-energy surfacel, are shown which correspond to tional eigenstates will be denoted ggy with the setM of
populated electron levelfbelow E{-)]. In the case of the right Vibrational quantum numbers. The respective vibrational en-
electrode thdJ ., are drawn referring to empty levelaboveE™)]. ergies readi w, [because of Eqg2) and(3) they start at
The middle part contains the potential-energy surfageof the  the zero-point energy; fan= X we drop the electronic index
adiabatic wire states(To be able to distinguish the different to getwy].
potential-energy surfaces from one another horizontal displacement Finally we give the coupling Hamiltonian between the
has been strongly enlarged. wire and the electrodes as

transition rates of the fourth order with respect to the wire-
electrode coupling are discussed. Finally, characteristics Herwire= > (Vikal eL){@al+ Vard @a){(@rel) +H. c.
for a two-state wire are presented. The paper ends with some k.a

concluding remarks. (4)
In a general treatment the applied voltage has to be ac-
Il. THE MODEL AND BASIC DENSITY OPERATOR counted for self-consistently within the electronic structure
EQUATIONS calculation for the wire.

According to the electrode-wire-electrode system intro- _ -IKEwise we can introduce a notation of the electrode-
duced in Fig. 1 we separate the complete Hamiltonian into &/ré coupling which directly accounts for the continuous

wire part, the electrode contributions, and a respective coglectronic energy levels of the electrodes. Therefore the elec-
pling, trode density of states

H=Huiret Hert Helwire- @) Nx(w):; O(w—exk) ®)

For the HamiltonianH,;,. we provide an expansion with
lrgjglicg éguz?elgbt?;/lihvglreexsitsagél g?:ggsgeéirrt;?nl]%\ﬂg_ is introduced. This enables us to replace the wire-electrode
tions inherent to such a single-electron approach are disqoupllng matrlx_elements of Eq4) l_)y Vx,a(®).
cussed, for example, in Ref. 86 The models introduced so far will be completed by a cou-
' ' ' pling of the seQ of active vibrational coordinates to remain-
ing passive coordinatéd>° These coordinates are denoted
Hyre= 2, (hea+Ha)|@a)(@al. (2) asZ={Z; and act as a dissipative reservoir. They may be-
a long to the molecular wire or, if present, to a surrounding
solvent. The respective coupling Hamiltonian is used in the

H.=T,et+ AU, denotes the vibrational Hamiltonian which form

belongs to the state, (see Fig. 2 For notational conve-
nience we split off the minimum mid ,=UP=#¢, of the

complete potential-energy surfatk, . The remaining differ- Heoe U W 7 6
enceAU, appears in the vibrational Hamiltonian. SR % m(Q.2)lem){@ml- ©
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The restriction to only diagonal contributions with respect tolt is given by the wire Hamiltonian Eq2) and the electrode

the electronic states iH g.g represents an additional assump- Hamiltonian Eq.(3). The superoperatdP accounts for dis-

tion. sipation. According to the introduced model of the coupling
The model specified so far seems relatively simple if reto an environment, Eq6), dissipation proceeds as an in-

duced to its electronic DOF. However, it will be demon- traelectronic state vibrational relaxation. Details on the struc-

strated below that the use of delocalized electronic eigenture of D can be found in Appendix A.

states of the wiréadiabatic statesextended to the respective

potential-energy surface is just a very appropriate description ||, RATE EQUATION FOR THE ELECTRONIC STATE

for inelastic electron transfer through the wire. Note also that POPULATIONS
this is the natural way to consider what is known as the o
polaron picture of transport. Furthermore, the separation of A. Some preliminary remarks

the vibrational DOF into an active set and a set of reservoir To underline the character of the results derived in the

modes has the great advantage to directly model vibrationabllowing parts of this paper we briefly recall those expres-

energy redistribution and to include final lifetimes of vibra- sions which are more or less standard for the theoretical de-

tional states. In the description explained below these proscription of molecular wire conductivif?. Our description of

cesses are restricted to a given electronic state. But the irdectron transfer will end with rate equations governing the

clusion of nonadiabatic couplings may extend the puraime dependence of the electronic state populations. These

intrastate inelastic processes by intrastate contributiongate equations can be derived from the so-called generalized

However, this is not a subject of the present studies and willnaster equatiotGME), (see, for example, Ref. 3in the

be postponed to future activities. limit of short memory effectin relation to the electron
transfer time through the wifeand have the standard form

A. Reduced density operator equations

J
As already explained our approach is based on the intro- EPm= — > (KmenPm—Kn_mPn) (13
duction of anactiveelectron-vibrational system coupled to a m#n
passivesystem of reservoitbath DOF. Therefore, we have with ratesk,, .,, describing the transition from electronic
to utilize the methods of dissipative quantum statee, to ¢,. (Note also the remark in Appendix B1 on the
dynamics?"****The central quantity is the reduced density fact that for a stationary situation the memory kernels auto-
operator matically reduce to ordinary rate expressions.
R A For the present example of a molecular wire embedded
p(t) =tr{W(t)}, (7)  within two microelectrodes the following rates appear: the
. transfer rates into the wirke, _,,, kg_., and out of the wire
which is obtained from the complete statistical operaltgt) Ko .., ka_.gr, the rates for intrawire transitiors, .,,, and
via a trace operation restricted to the reservoir states. Thehe ratesk, . and kg ,, which directly interconnect both
the total population realized in the electronic staig fol-  electrodes. In the language used to describe donor-acceptor
lows as electron transfer mediated by a molecular bridge the latter
R rates refer to the superexchange mechanisms whereas the
Pm(t) =trii{ emlp(t) | om)}- (8) other contributions are related to sequential processes. In a
. case where these sequential processes are of minor impor-
The equation of motion fop reads(see, e.g., Ref. 31 tance one can expect a current formula which is directly
proportional tok, _,g—kg_,, - Otherwise one has to solve the
iA(t): —iLp(t) ) complete set of rate equatiofikd). If the former-mentioned
at? pL)- case can be provided the rate of forward transition reads

Here, the Liouville superoperatdl accounts for dissipation,
too. We use a separation into a zero—order part and a cou- kL%R:kE fLkfroKLk—Rq (14)
pling contribution according to 4
with  Fermi's Golden Rule expression Ky .grq=
L=Ly+Ly. (10 27T g rg/fil? S(wx—wrg) for the rate, and thd matrix

. N _ _ T\« rq Of the left-right transition. The single-electron distri-
The coupling contribution comprises the wire-electrode COUY tion reads for the left electrode

pling Eq. (4),
1 fL=Tremifiory) (15
[:V:g(Hel—wire- ) I (11 and
whereas the zero-order part reads fro=[1~ frem(fiwrg—€V)] (16)
. for the right electrode. In both casés.,, denotes the Fermi
_ - distribution. Such a single-electron approach is common in
=—(HyietH +Hg...)_—iD. . "
Lo h (HuiretHL+HR ) —=1D (12 the literature(see, for example, Ref. 1®ut has been criti-
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cized on fundamental grourtis(cf. also the multielectron expression for thd& matrix is easily converted into the fol-
approach on electron tunneling through an array of quanturfowing expressions for the transmission coefficients
dots’” 9. Tan(Q, Q) =27 3(Q =)/ [(Qr—£2) (L — &)

Alternative notations of Eq(14) have been presented in  The given derivation asks for a generalization which ac-
different ways. We mention the formull, _g=27[dw counts for vibrational DOF. To do this it only remains to

tro{I' () G(w) [P (w)G* (w)} which has been adapted replace the electronic state vectors and energies by respective
here to the scheme of F|gli’13The expression incorporates combinations with vibrational Contl’ibutions, i.e., we take the

a trace with respect to all electronic states involyébse of  electron-vibrational stategy,w¢m (note thaim comprises the

the wire and the two electrodes’ denotes theretarded wire states and those of both electrodesd the energies
Green's operator of the wirgossibly including the interac- &m* @mw (for the notation, see Sec)lIMoreover, the ther-
tion with the electrodesand the operator&® and F'® mal distributionfy, of vibrational quanta is introduced ex-
describe the coupling of the wire rj:o the left and the righttending the initial-state electron distribution given by the

lectrod tivelv. Both ¢ d order in the wi Fermi distribution of the left electrode. Then one directly
electrodes, respectively. Both are o second order in e Wir€s ;¢ the transmission coefficient generalized to the incor-
electrode coupling and include the density of electrode stat

; T ! oration of vibrational contributions:
Eq. (5) as well as the respective distribution functions, Eqséﬁ

(15 and (16). They read"™(w)= =, ,['$(@)]@a){¢pl

with the coupling ratesf(,= fx(exy)) Tan(€Y ,Qr)ZZWMEN o(Q+wy— Q) —wy) fn(fioy)
1 <XM|X KX K|XN>
(X) _ = a a
L) = 5 Vax(@) V(@) Nx(@)x(@).  (17) oD IR Sr——
In the most simple case the Green’s operator is given as E (nl oL xoLl xm) (19
é(w)ZEa |oa){@all(0—ea+ie) (notee— +0). T Q)+ on—ep—op |

The introduction of the density of states of the left and o _ ) )
right electrode and the use of frequency instead of wavetowever, it is obvious that this formula does not give a
vector-dependent wire-electrode coupling matrix element§omplete description of the way electron-vibrational cou-

results in the alternative notation of the transfer rate pling affects the charge motion through the wire. According
to its derivation the expression f@g, is only valid if (i) the

wire levels are far away from the electrode levels andif

kL%R:j dQ|er2b T80 Tp(Q, Q)T (), any vibrational relaxation is absent. It will be the task of all

& (18) following considerations to present a formalism and to de-
rive expressions which are of the type of Eg8) but remain

which will be preferred in the following. The quantities valid also for the case of an energetic resonance between the
T.o(Q,Q,) will be of central interest for the considerations wire levels and the electrode energies and account for vibra-
in the whole paper. They describe the transmission of ational relaxation.
electron through the wire which enters the wire with energy
7.0 (from the left electrodeand eventually changes its en- B. Projection operator and general rate expression
ergy to #Q), if leaving the wire(into the right electrode
Therefore we will name these quantities molecular wire
transmission coefficientélow big the energy difference be-
tween the incoming and outgoing electron might be is di

From the earlier studies in Refs. 32 and 33 it is known
how to derive rate equations of the type given in Ef3)
_together with rate expressions which do not contain any ap-
rectly regulated by thdy,.*° proximation with respect to the electron-vibrational cou-

If the electronic wire levels are far away from the states ofpl'ng' To this e!"d one has to construct equations of.mot|on
the electrode occupied initially and after the transmissionfor the electronic state populations, E@). The populations
process an easy derivation of tlienatrix and the transmis- 2" be deducec} from the electron-vibratiotralduced sta-
sion coefficients becomes possible. Since any energetic res §t|cql opgratorp(t), Eq. (7), via the Frace W'th. respect to
nance is absent between the electrodes and the wire levels vibrational DOF tﬁb{ .-} and vVia a matrix ele_:ment
the coupling between the wire and the left electrode only@’VeN by the electronic statey,. It is a well-established

weakly disturbs the initial state of the electron transfer pro_f[echmque to determine such a reduced quantity by introduc-

cesses. Within first—order perturbation theory the states dgfda proje_ction superoperatpt Th_e ;uperoperfator achieves
the left electrode |¢,) have to be extended by a separation qf the reduceq statistical oper@t@) of the
SoViko/A( sLc—e) X|ep). Such a correction to the iso- electron-vibrational system into the sum of a time-dependent
lated electrode states results in an effective coupling matri?lec_tron'lC Paf‘ gor}talnlng thAe Stﬁte p(i_pl:jlatlons ang Into vi-
element between the states of the left and the right electrod¥ationa Astat|st|c§ operators,.. I applied to an arbitrary
which reads$/{§", .= S,V sV rq/f (eLk—€p). This matrix ~ OperatorO the action ofP follows as
element can be identified witl g, given in the Golden
Rule formula from above and is known in electron transfer A R T A

) . PO= 2, r I tr{II,O}. 20
theory as the superexchange coupling matrix elerfiefihe % ml It O} 20
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Here, tf . . .} denotes the trace with respect to the complete = (2) ° @

set of electron-vibrational states, Km—n= fo dtKim(t) + fo dtydtdtsK (s, 1o, t3),
. (23
= |em){@nl (21)

is the projector on the various electronic states, and the opVith the second-order contribution
eratorsFm refer to equilibrium states of the vibrational DOF

which are realized if the respective electronic statgshave ~ ~
been occupied, i.e. P e Kim(1)= =t Lyllo() Ly PITn}, (24)
ra=exp(—Ha/KgT)/tryp{exp — Ha/ksT)} and the fourth-order contribution
and 4 .
Kty o, ta) =tr{{TLulto(ty) Ll Us(tz) — P
i:XkE r neu™ €XP(—H neu/kBT)/trvib{qu —H neu/kBT)}- X ﬁvz,{o(t:;)ﬁvpﬂ m}

According to Eq.(20) the application ofP to the reduced
statistical operator results in :K514rr’1nf)(tlat21t3)_2k K@Ut)KE(ta).

- ~ A (25

Po()= 25 T [TnPr(0). (22

Both expressions incorporate the change from the Green’s
If we take the trace with respect to the vibrational DOF andsuperoperator defined in the frequency domain to the time-
chose the diagonal matrix element given by the sigteve  evolution superoperatdt, [cf. Eq. (B6)], which is defined
get from Eg.(22) the electronic population, E@8). In the  via a complete neglect of the wire-electrode coupling. This
same manner a respective equation of motionFfgrcan be  coupling is characterized in the above expressions by the

constructed. The equations of motion for the state populatiouville superoperator,, Eq.(11). Note also thaPIl,, is

tions in their most general form are known as GME's andigentical with r,,i1,, which represents the initial-state
represent rate equations which include memory effects. Oncgeactron-vibrational density operator.
the latter are neglected ordinary rate equations of the type of : . ;
E 9 y q YPE Ol The separation ok} into the nonfactorized pait ("
g. (13) are obtained.

The GME for the state populations can be deduced fromand Into the facton;ed cqntrlbutlonsgi)K(kﬂ results from
N o i - o , the projectorP combined withi4y(t,). The appearance of the

the Nakajima-Zwanzig identity foPp(t). Itis given in Ap-  tactorized part needs an additional comment. First it is im-
pendix B, Eq.(B2), and represents an exact equation fory,rant to underline that a description which is exclusively
Pp(t). Here, the only deviation from the standard case ishased on second-order rate expressions such a@#&pro-
given by the fact that the original equation of motion /gt)  vides a complete dephasing between the wire states and
already accounts for dissipation. In this manner vibrationathose of the electrodes. This results from the fast intraelec-
energy relaxation and dephasing enters the rate expressionttonic state relaxation compared to the electron transfer time.
be derived. From the Nakajima—Zwanzig identity one getsHigher-order rate expressions which are in the present de-
the required GME by taking respective matrix elemeste  scription of higher order with respect to the wire—electrode
Appendix B. As a byproduct an expression for the memorycoupling account for vibrational and electronic coherences
kernel of the GME follows. It is given in Eq(B13) as a  between wire states and the electrode levels. At the same
quantity defined in the frequency domain which accounts fotime, however, they partially account for vibrational relax-
the electron—vibrational coupling beyond any perturbatioration. It will be shown below in more detail that it is the role
theory and which incorporates a perturbation series with reef the factorized parKgi)K(kznl to compensate these relax-
spect to the wire-electrode coupling, E4). Taking the ker-  ational contributions to avoid double counting when solving
nel at w=0 the rates entering the ordinary rate equationsthe rate equations.
Eqg. (13) are obtained. The rate kernels can be directly computed when carrying

For the following studies we concentrate on rate expreseut the various commutators involved. But alternatively one
sions up to the fourth order with respect to the wire-electrodean use a classification based on the so-called Liouville
coupling. This approximation does not consider electrodespace pathway description introduced in Fig. 11 of Appendix
induced wire-level renormalization but is sufficient for the B below. In the next section we will calculate the second—
present aim to underline the importance of electron-order rate expressions. Independent from their appearance in
vibrational coupling. Therefore we take the zero-frequencythe GME they are necessary to compute the factorized part,
limit of the exact kernel, Eq(B13), and introduce a restric- Eq. (25), of the fourth-order rate. These calculations are fol-
tion up to the fourth order with respect to the wire-electrodelowed by an detailed analysis of the fourth-order rate expres-
coupling. It gives the transition rates as sions.
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‘oo S
Toe .

Pathway Il

(=)
FIG. 3. Scheme of electronic density operator elements appear-
ing in the fourth-order expression for the left-electrode-to-right- @
electrode transition. The transfer proceeds from the upper-left ele-

mentLL to the lower-right elemenRR via all intermediate parts

(for a detailed explanation, see Fig. 11 below 0 @

IV. CALCULATION OF THE SECOND-ORDER RATE
EXPRESSIONS Pathway lll (=)

Taking the Liouville space pathway representation of the @ @
rate as given in Fig. 3 one first notices that within a second- _ o
order express|0n the rate_k*}Rq does not exist. There Only FIG. 4. Three different pathWayS of scheme in Flg 3 corre-
existk ., andk, Rq- The respective rate kernels already sponding to the left-electrode-to-right-electrode transition shown in

Fig. 1. (There are three further pathways leading to complex-
g‘et:?dc:;(f)d in Eq/(24) read in more detailfor Um see Ap- conjugate expressions of those shown in the figurathway | only

incorporates intermediate density operators which are off diagonal
@) . A with respect to the electronic states. This pathway may be related to
Ka k(D) = = t{IT Lyl () Lyr ned Tk} what is known as the superexchange mechanism of electron trans-
fer. Diagonal contributions appear in the middle of pathways Il and
. |Va,Lk|2 Il (elementab with a=b). They incorporate intraelectronic state
ﬁZ

e (Cu ety (U (DT redd 2 (D} +cCuC. vibrational relaxation.

(26) brational DOF referginitial state of the transition Noting
Eqg. (14) the complete rate expression of the second order

and
reads(for f,, see Eq(15)]

%2q) (= tr{ﬁRq[:VZ’IO(t)EVF neﬁa}

2
= Me‘(SRq‘Sa)ttrvib{Ua(t)FaD Oy +c.c,
h Instead of carrying out th& summation we introduce the
27 density of states for the left-electrode levels, ), and the
coupling rate, Eq(17). This results in the following repre-
In the second part of each expression we used Figs. 3 andséntation of the rate:
to simplify the trace expression. In particular, pathway Il of

kba=; kaJO dt K (1). (30)

Fig. 4 can be used to compute both trace expressions. The (L) iy et
upper-left part of pathway lifrom (LL) to (ab)] gives the dQ th (Qpe"THTFIC g a(t) FC.C
expression foKa {« and the lower lefffrom (ab) to (RR)] (31)

that for Kqu)a Both second-order kernels, Eq®6) and
(27), contain the two different types of correlation functions In the same manner we obtain
(note the rearrangement of operators under the race

kaﬁRZJ erfo dtrR(Q,)e®elc, () +c.c,
(32)

Creua(t) = thin{T nedJned U (1)} (28)

and
where all quantities involved are now defined for the right
Caned ) =trip{TaU.(H U (D1, (29)  electrode.
e i ned Although both rate expressions are related to wire—
where the first indexd in the latter formula indicates the electrode transitions they are common in electron transfer
electronic state to which the thermal equilibrium of the vi- theory where they are usually termed nonadiabatic (&,

2454XX-7



V. MAY PHYSICAL REVIEW B 66, 2454XX (2002

e.g., Refs. 31 and 30The only nonstandard item here is the correspond to trace expressions being pairwise complex con-

incorporation of vibrational level broadening. jugated one to another. The three essentially different path-
ways are shown in Fig. 4.
V. CALCULATION OF THE FOURTH-ORDER RATE The transition rate which connects the left with the right
EXPRESSION electrode is obtained from the fourth-order kernel, &),

as
For the following we will exclusively concentrate on the

left-right-electrode transition. Of course fourth-order expres- o

sions also exist for the rates coupling the wire levels directly — k_g=>, kaquf dtydtpdtzKE | (t1,t0,t5). (39)

to the electrodes. However, their computation is outside the k.q 0

scope of this paper and will be discussed elsewhere. | . f ized dinto f ized
The (nonfactorized fourth-order kernel related to the t_zep_aratefs mtodabnor;]actorlzed padrt and into factorized con-
transition ratek, g reads tributions formed by the second-order rate expressions.

Concentrating first on the nonfactorized paf; of the

K%”Lf)k(tl'tzyts) kernel one notices its decomposition into three terms related
' R o to the pathways I-Ill of Fig. 4. The part referring to pathway
=tr{I1grgLylho(ty) Lyldo(ta) Lylho(ts) Lyr (1T} I only contains density operators that are off diagonal with

(33) respect to the electronic quantum numbers. This pathway
describes the superexchang®nneling type of electron

The various types of density operators appearing during thggansfer’® whereas the terms related to pathways Il and Il
time evolutions contained in this kernel are shown in Fig. 3account for a sequential type of transfer. Since for these path-
within a two-dimensional scheme. One starts with the vibraways the intermediate density operator may become diagonal
tional equilibrium in the left-electrode statg  (described  with respect to the electronic quantum numbers of the wire
by r,I1,,). According to the action of’y the first or the (see Fig. 4, intrawire-state vibrational relaxation takes place.
second electronic quantum number changes. Thus after the To calculate the nonfactorized part Kf{g’Lk introduced
time-evolution superoperator has been applied we may movie@ Eq. (34) we take Eq.25) and note the pathways labeled
in the scheme one position to the right with quantum num4-Ill in Fig. 4. The notation follows the graphs of Fig. 11
bers (Lb) or one position low with quantum numberal(). below where we start from the initial density operator and
This procedure is continued up to arrival at the density opput respective operators to the left as well as to the right.
erator diagonal in the quantum numb®&g of the right elec- Remember that the electronic wire energles, have been
trode. It is obvious that there exist six different ways whichsplit off from the time-evolution operators. We obtain

Kraik(tyt2,t3)= Py exp( —ie(tztty) Fiegg(tatty) —ieatiHiepts)
Xtrvib{qu,arJ a(tl)va,kaJ neitz)oneLﬁ'[S)i:neuVLk,bDt?(ts)vb,qu:J rTeL(tz)UrTeLﬂtl)}'i‘C. C. (35)

ﬁ]\llljlt;ansfer-matrlx elements can be put outside the trace for- CO(t1,t0,t5) = tript Ua(ty) U ped ta+ ta) T nedUs (t3)

XU (th+t)h. (37)

For practical reasons we do not give an arrangement of op-
erators with the equilibrium statistical operator at the outer-
left position. Furthermore, one should notice that the corre-
lation function is labeled by the number of the Liouville
Xexpi(erg—ea)ti—i1(ek—eRrglta space pathway to which the function belongs. The notation
. _ o introduced in Eq(36) shows that contributions of electronic
i(eLk—ep)ta)Capl(ty ta tg) +C. €., and vibrational states to the complete rates could be sepa-
(36)  rated. In particular, neglecting the influence of vibrational
DOF means to replacg!}) by 1.
Next we consider the kernel for the second path\sse
and the trace expression results in a three-time correlatioRig. 4). In this case as well as in the case of the third pathway
function which can be written as there exist an intermediate density operator which may be-

1
K%’l,l)_k(tl to,t3) T8 ;) VatiVikoVoreVras
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diagonal with respect to the wire states. In such a case thend with
dissipation acts differently from the way it has been consid-

ered in pathway [cf. Eq. (A5)] We obtain

o 1 - ,
Rq Lk(tlvt21t3)_g g expli(erg—ea)ti—i(ea—&p)ty

—i(eLk—ep)ts )trwb{VRqa a(t)Uap(t)
X[Va,LkUneLﬁtB)rneuVLk,bUtJ;r(ts)]

X Vp rqUned 1)} +C. C.

If a#b the time-evolution superoperatbt,,(t,) reduces to
the action ofU,(t,) from the left andJ; (t,) from the right.

(39)

Fora=b, however, the dissipative dynamics are more diffi-

cult to describe. In this case we will further writé, 5(t,).
Therefore we get

K%“Lk(tl,tz, 3)— ;) VakVikbVb,rqVRg,a€XR (€Rg

—ea)ti—i(ea—ep)ty
~i(eLk—e)ta)(8a,6Ch (1 2, t3)
+ (1= 8,p) Cly 1y, ta,t3)) +C. C.
(39
The off-diagonal(od) contribution reads similarly ta{},
Eq. (37),

Cgkl)pd)(tl vt2 ,t3) = trvib{tJ a(t1+ tz)U neLKtS)Fneu

x Uy (t3+1) U et} (40)
however, the diagonal part follows as
Cg;)(tlatz-ts):trvib{[ja(tl)uaa(tz)
X[Uneyta) el 5 (t) 10 ta)}.
(41)

Its behavior will be discussed later on.

Finally we denote the expression for the third pathway,

1
KGRt =2 2 VauVioVoraVraa

Xexp(—i(erg—ep)ti—i(ea—ep)ts
—i(eLk—8p)ta)(SapCUR (11,15, 1)
+(1— 8,5 C 0Nty 15, t5)) +C. C,
(42)
with

Cgllal ’Od)(tl !t2 't3) = trvib{fJ nelﬁtl)Ua(t2)tJ neLKtB)?neu

XU (t+t+tg)), (43)

Cgelll )(tl 1t2 ,t3) = trvib{UneL(tl)uaa(tZ)

X [UneL‘t3)rneLpa+(t3)]U;(tl)}-
(44)

A more detailed computation of those correlation functions
which are diagonal with respect to the electronic wire quan-
tum numbers requires the use of the electron-vibrational state
(energy representation. Therefore we start to introduce this
representation for the off-diagonal correlation functions in
the next section.

Before doing this we note that there exist different ap-
proaches to handle the correlation functions related to the
fourth-order kernel. An intensive study has been carried out
for similar functions which one finds if calculating the third-
order response functions for a model of two harmonic
potential-energy surfaces coupled via an optical transftion.
The restriction to two potential-energy surfaces constituted
by a large set of harmonic oscillators allows to express all
correlation functions via the spectral densitidsg, ()
=2(gm(i) —9n(i))? 8(o—w)). Here, —2(gm(j) —gn(i))
gives the(dimensionlesksrelative displacement of the vibra-
tional equilibrium position if statep,, or if state ¢,, of the
wire-electrode system is occupied. Such a representation via
the spectral densities is particularly useful since experiments
with ultrafast optical pulses give direct access to the time
dependence of the correlation functions. This is different
from the present study where the entire threefold time depen-
dence is removed by integration.

A. Energy representation of the off-diagonal correlation
functions

To introduce the electron-vibrational state representation
we first give the expansion cﬁigg Eq. (37). After a rear-
rangement of the time-evolution operators in the trace ex-
pression one easily obtaif,(% w) denotes the thermal dis-
tribution, for the definition ofw,\ see Eq(A7)]

ng(tlytzﬂa):K LE':JA " fun(F i) tryin{ T T T T}

X exp— i (@an— o)t —i (0x— o)t
—i(wx—wp)ts). (45

The trace including projection operators on the various vi-

brational states abbreviates the respective product of vibra-

tional overlap matrix element$-ranck-Condon factoysIn

the same manner one can rewrite the two remaining expres-

sions, i.e., we get

cly Od)(tliz-ts):K ;ﬂ . fun(Fo i) tryip{ L [ Ty I}

i (Z’aN_ Z’EL)tZ

(46)

X exp(— i (wan— o)ty —

—i(wg— o} )ts)

and
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X (tz;K;aLl)(xanlxm)- (50)

Here we introduced the matrix elemenigy an(t2;K;al)
=(xanlp(t2;K;aL))|xan) of the density operator, E¢49),
if propagated to the finite timg,. The initial condition reads

Cz(altlal’Od)(tlatz,ts):K ;w . fun(Fr i) tryip{ L T Ty T}
X exp(—i(wy—of)t

—i(@an— @F)t— i (0 — 0 t3). (XanlxK)
Ni=0;K;al)=6n || oOnNT (1= N) 77— |-
(47) Pan,an(t2 ) N,L| ON,N ( N’N)<XaL|XK>(51)

B. Energy representation of the diagonal correlation functions ~ The density matrix at finité, is obtained in solving respec-
tive equations of motion which correspond to the time-

cl) and c{!" include vibrational relaxation within a . ; e
. 2 . S evolution superoperatdr,,. According to the relations in-
single electronic wire state which may result in vibrational .
troduced in Sec. Il A we get

equilibrium within this state. Therefore, both trace expres-
sions become independent tf if this time argument be- - _
comes larger than a typical viprational rele}xation time: To EpaNyaﬁ(t;K;aL)=—i(waN—w;ﬁ)paNyaﬁ(t;K;aL)
demonstrate this we first consider the action of the time-

evolution superoperatdf,,. This is done by introducing the

vibrational state representation already used in the foregoing + 5NNZ Iak_anpak.ak(t;K;al).
section. We obtain K

(52)
T - 1+
Uaa(t2)[Uned ta)F e a (t3)] It separates into diagonal and off-diagonal contributions. The
L off-diagonal parts of the density matrix are simply deter-
=> f(fox)exp(—i(wkx—oi)ta) xklxaL) mined whereas the diagonal pad(t) =pan an(t;K;al)
Kb follows as the solution of a rate equation describing vibra-
XUaa(t2)[ | xk)(XaLl]- (48  tional relaxation within the electronic staig,. We write
To calculate the action dff,, we reformulate] xx)(xa.| in Pan,an(t;K;al) = oy nPan(t;L)
such a manner that it corresponds to the initial vaie, +(1= Oy, panan(t=0;K;al)
=0;K;alL) of a density operator. Therefore we introduce _ ~
= xx){Xarl/triv{| xx){xaLl} which leads to X exp(—i(way—wit). (53
. Ixk ) xall Now, we can insert this expression into the correlation func-
t,=0;K;al)="——. 49 tion, Eq.(50), to get
pltz '™ a0 (49 tion, Eq. (50 to g
Note that the deper_1qenceT on the |n|t|_al—state quantum n‘_JngzL)(tl,tz,tg)= 2 Xfth(th)trvib{ﬂKﬁaL}
bers has been explicitly given. If one inserts this expression K, M,N
into Eq.(48) and letst, go to infinity p(t,;K;aL) changes to X exp(—i (= 0 )ty)
the equilibrium operator, and theK,L summation results in @K™ @al)t3
th(eu )correlatlon functiorCpeua(ts), EQ.(28). If inserted into X Pan(ta: Dtryipt Ty ot
Caa » EQ.(41), the correlation functioi€, ,.(t1), EQ.(29), B _
appears additionally. This indicates the possible compensa- X exp —i(wan— op)ts)
tion of the factorized part of the complete fourth-order kernel o
in the limit ty,—oo. + (16 W) fin(fr o) tryipf LTI Ty I
For further use, however, we also need the expressions for - ~ - ~
finite t, where this compensation is incomplete. Therefore Xexp(—i(wan— oyt —i(wan— @zt
the diagonal par€!) of the correlation function which be- i e £4
longs to the second Liouville space pathway is calculated in (o= wz)t). (54)

more detail. To do this we first give the state representatiohe first part of the fourfold summation cannot be separated
of Cga)_, Eq. (41) [without calculating the action dff,,(t;)  into two double summations since the populatidhg, de-
in detail], pend, via their initial values, oh. A separation is only valid

in the limit t,=c where the initial value dependence van-

ishes. Nevertheless, we will denote this first partCig'"
Cg;)(tlyt21t3)= > Rl xa)l? P ICE;%

KLV (factorized pait whereas the second part will regf""
_ ~ (nonfactorized payt
Xexp(—i(wan— oyt In the same manner as explained above we can also de-
- - termine the diagonal part of the three-time correlation func-
—i(ok— 03Dt XMl Xan) Pan.an tions referring to the Liouville space pathway llI. It differs
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from C{!(t,t,,t5) only with respect to thé; dependence order kernel and are related to the contribution of pathway |
Wheer)aN—:v}fA has to be replaced @M_;;N_ Againwe aS well as to the electronic off-diagonal contrlbutlons _of
will write c = i) 4 st pathways Il and Ill. The second part of the transmission
aa aa aa coefficients are diagonal with respect to the electronic quan-
tum numbers of the wire and incorporate the electronic diag-
onal contributions of pathways Il and Ill together with the
According to the above discussions we separate the congontribution of the factorized part of the fourth-order kernel.
plete transmission coefficient into a nonfactorized and a fac- To carry out concrete computations based on [&@) it
torized part. The first reads remains to carry out the threefold time integration still ap-
pearing in the formulas fo7(" and 7(. Accordingly the
nonfactorized transmission coefficient takes the following

C. Complete fourth-order rate

M(Q,,0,)= fowdtldtzdtgx[(i(Qr—sa)tl—i((h form:
— Q) —i(Q—ep)ts)CLA(t1 1o, t3)
+expli(Q,—e)ti—i(ea—ep)ts ™0, ,0,)=2i S jth(ﬁwK) _
(2~ 8t (BasC (1 1) [t oyl [t el
+ (1= 8,)Cly Nty 15, t3)) «S <{M|ﬁaN|XK>~
+exp(—i(Q,—ep)ti—i(ea—ep)ts N [Q+oyl—[eat wan]

—i(Q—ep)ta)(SapCll M (ty,15,t5)

XE <XK|ﬁbL|XM>
+(1= 82 p)CYY Nty 1, t)) ] HC.c. T [Q+ok]-[ept ofy]
(55

'y Bup(1— 8 )+ (1= 5, p)
For the factorized part we get +2i, al ~*"’N ( b
LN [eptop ]—[eat wan]

7900,,0 =detdtdt A
aalth ) 0 1o XE fth(ﬁwK)<XaN|HK|XbL>

K [Q+wx]—[ep+of]

X > (ot}
K,EMN

I
x 2 <Xb|_| M|XaN>
M

X [exp(—i () +w—e,— 0} )ty)+c.c] [Q,+ 0} ]—[eat ©an]

X[Pan(ta;L) = fin(fwan) trin{ T Tan}
X[expli(Q,+ ol —e4— wan)ty)+C.Cl.
(56)

If we neglect the vibrational contributions, the difference The various terms are arranged as follows. The first fourfold
P.n(t2;L) — fi(hw,y) has to be set equal to zero. Hence, it summation(with respect to the sets, M, N, andL of vibra-
is directly obvious that the factorized part of the transmissiorfional quantum numbeyorresponds to pathway | ¢€),
coefficient vanishes in the absence of electron-vibrationatvhereas the second fourfold summation relates to pathways

My xa
_% (XbL| M|X N> (58)

[Q+ou]—[eptop]]

coupling. Il and Ill. The elimination of the term witlh. =N in the part
Then, the final expression for the left-right transition ratewith a=b indicates that the contribution describing vibra-
can be cast into the following form: tional relaxation has been removed. It will appeaf{f} (see

below). To have a clear distinction between electronic and
vibrational energies we arranged the wire energies, for ex-
ample, ase,+wyy. The vibrational contributionw,y is

iven by the complex quantityy—1i , which includes

+ 80,6 Tan( 1, QOITE(Q). (57) geside 3':he vibratIi:)onanenerg?)e:‘z;\:l,\,I t}/]aeM level broadening

The formula makes use of the electrode-wire coupling rategam/2 (cf. Appendix A. For both electrodes we séby
introduced in Eq(17) and reads similarly to Eq18) where  +w, (X=L,R). The projection operato , (and others
we already introduced the molecular wire transmission coefenabled a compact notation of vibrational overlap integrals.
ficients7,,,. Here, this quantity has been separated into two In a similar manner we may denote the factorized part of
parts. The partZ{}l? stem from the nonfactorized fourth- the transmission coefficient

= | d0,d0,Re3, TQOTE(0,,0,
a,b
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VI. SOME NUMERICAL ILLUSTRATIONS

T0(Q,,Q,)=4>, f(h
ad b @20) ;. w o lxdxa) To underline the importance of vibrational contributions

we compute the transmission factors, E@8) and (59), as
2\ 1 well as the current, EqB_8), for a sufficient simple model_of
[+ og]—[e4— 0F,] a molecular wire. In doing so we may choose an arbitrary
electronic wire spectrum. However, it seems more appropri-
w ate to consider the wire states of a tight-binding model with
XMEN f dty[Pan(tz;L) — fin(hwan) ] Ny, Sites leading to the energy spectrudie,=E,
N0 +2Vcosala=7v/(Npgt+1) andv=1,... Nyol. The ex-
pansion coefficients of the wire statps,) with respect to
— —. the site states read,(m)=2/(Nno+ 1)sin@m). Further-
[eat @an] —[Q+ 0] more, we will assume as already indicated in Fig. 1 that the
(59) first site of the wire couples to the left electrode and the last
to the right electrodgf the voltage drop appears at the right
electrode the model for the wire levels remains valid at a
finite applied voltage, too.
The wire-electrode coupling matrix elements introduced

1

X xml xan)?Im

The t, integral incorporates théncomplete¢ compensation

of those parts related to pathways Il and Ill, including vibra-

tional relaxation, and the factorized part of the total fourth-. -

order rate kernel. The integral exists since the vibrational', NEq'V @ follow h as” VLkla_VLtkvlca(l_)t Fa(rs;j

state populatiorP(t,;L) converges to the thermal distri- Ca (* mol) N R w 'C(R) a*ow us to wr;{e ab

bution f (% w,y) independently of the initial population of =Cj(1)cy(1)I'™ and I'{Y=cA (Nmo) Co(Nmod TR, It is

the vibrational level. obvious that the newly introduced coupling rates are defined
The part of']'g; which is proportional tdf, follows from by the local wire-electrode interaction matrix elements. As a

the product between the second-order transition rate from Egsult we may write Eq(57) as

left-electrode level into the wire and between the transition

rate from the wire to a right-electrode level. Therefdfg), is kL_>R=f d0Q,dQ,TOQ)TQ,,0)TRQ,). (60)
responsible for théincomplete cancellation of the total in-

coherent (hoppinglikg processes of the electron transfer The total transmission coefficient separates into a nonfactor-
through the molecular wire as contained in the fourth ordefzeq part

rate. Everything that is basically different from this incoher-

ent transfer is contained in the transmission coefficEft, T7M(Q,,Q,)
Eq. (58). The first part describes superexchange electron
transfer since it looks similar to E¢L9). This expression has _ * nf) *
. e . =R 1 1 0,,Q N N
been introduced as the generalization of the simple superex- e% Ca (1)Co(1)Tap (21,£2r) €5 (Nimol) Co(Nmo)

change transmission coefficient to the inclusion of vibra-

tional DOF [for a direct comparison with Eq19), inter-

change the vibrational quantum numbbrandK]. But 7(" and into a factorized part

includes vibrational level broadening since we included vi-

brational energy dissipation and dephasing. This “general-

ized superexchange” formula for the transmission coefficient 70(0,,0,)= ReEa: [Ca(1)Ca(Nima) P78 21, 2r).

is supplemented by additional terms which guarantee the va- (62

lidity of the formula not only for the case where the molecu- ] o ] N

lar wire states are far away from the Fermi sea but alséOr the further discussion it is appropriate to additionally

where they are degenerated with it. separate7(" into 7> corresponding to Liouville space
Although the derived formula gives a very general andPathway I(superexchange contribution, cf. Fig. dnd into

complete description of the modification of the charge trans S‘_EQ) which refers to pathways Il and Ilsequential contri-

mission through a molecular wire by vibrational DOF, therebution).

are some points that need to be mentioned. First, the ap- Concentrating next on the potential-energy surfadé,

proach is of fourth order with respect to the Wire_e|ectrodei5 seems to be sufficient to choose them all to be identical for

coupling. Therefore one cannot account for the modificatiorfh€ wire states. This assumption leads to the absence of any

of wire levels by the electrode-wire coupling. However, if horizontal shifts of theAU, one to another, and all the vi-

vibrational motion and relaxation is fast enough higher or-brational statesy,y can be replaced by the single type

ders of the electrode-wire coupling should be of less imporXexav » referring to the presence of the excess electron in the

tance. This case of fast vibrational relaxation involves thewire. Those states have to be confronted with the stafes

described electron transfer mechanism of the type known ifF Xnew Of the neutral wire. In contrast to the many types of

electron transfer literature as nonadiabatic transfer. HoweveFranck-Condon overlap integrals appearing in E§8) and

the fourth-order rate realizes a deviation from the completd59) there remains a single typérc(M,N) = Xnew| Xexav)

hoppinglike transfer through the wire. It accounts for coher{note (xexau|xnew)=frc(N,M), where in the case of

ence between the electrodes and the wire levels. harmonic-oscillator states the sign * can be remdvédr-

(61)
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thermore, we will concentrate on one or two vibrational co-and the factorized part can be written as

ordinates with vibrational energy

wM=; Mjw;, (63)
leading to the reorganization energy
Ey=2 110i[Gned )~ Goxd 1)1 (64)

To specify the level broadening we take an expression which

corresponds to éystem-reservoircoupling function linear

7000, ,m:@ |ca(1)CalNmo) |?

fun(fwk) FE(K,L)

X Im :

KE,L Q) =gt ox—o =iyt y)

_ (8, n—Fn(fiwn)) F2(M,N)

ereuE Im LN TR on))Tec .
N Qr—eatoy—oy—i(ym+ wn)

(68)

in the reaction as well as the reservoir coordinates. FurtheF]—hiS formula, once it has been compared with E59)
more, the coupling function should be independent of thg,qeys an additional comment. Instead of théntegral con-

state of the wirdneutral or with the excess electioihere-
fore, the used expression readee, e.g., Ref. 31

m=$[M,-<1+n<w,->)+<1+M,->n<w,->]y,-, (65)
wheren is the Bose-Einstein distribution ang denotes a
reference broadening.

taining the difference of the time-dependent vibrational state
population and its asymptotic equilibrium value there ap-
pearst[ 6. n— fin(Awy)]. This is an approximation of the
exact expression and follows if one identifi€y(t,;L)

in Eq. (59) with a simple exponentially decaying expres-
sion Pan(to=2;L) +[Pan(t2=0;L) = Pan(ty=o05L) ]
Xexp(—t/ng), with Py(to=0;L)=fu(fhwy) and Py\(t,

As a result the “superexchange” part of the nonfactorized=0;L) =6y | .

transmission coefficient, E461), reads

T(Q, ,Qr>=—2lm§ €2 (1)Ch(1)CE (Nimo) Cal Nino)

v fth(th)
Km Q= Qi+ oy—og+i(ym+ v)
fea(M,N)fee(K,N
«S rcl ) FC(. )
N Q—eatoy—oyti(ymt+ )
% fFC(KvL)fFC(MIL)

T Q) —eptog—o —i(yt+y)’
(66)

For the “sequential” part we get
TEHQ,,0)= =21Im2, 63 (1)b(1)¢5 (Nmo) Cal Nmal)

xS Sap(l=0k,m)+(1=bap)
KM ep—eat oy—ox+i(ym+ vk)

x% fea(N,M) fea(N,K)

1
O —eatoy— o +i(yn+t vk)
1
O —eptoy—on—i(Ynt ym)
fin(f o) fec(L,K) fre(L,M)
T Q—epto—oy—ily+tym)’

(67)

X

If the number of vibrational DOF is reduced to one or two
reaction coordinates influencing the electron transfer in the
entire wire, Eqs(66)—(68), are ready for a direct numerical
computation. It should be underlined here, however, that this
is not the complicated formulation of the possible direct rate
computation via a numerical propagation of the density ma-
trix (feasible at least for the case of two vibrational DOF
Since we are interested in the time asymptof&tstionary
case this would be hardly accessible by a direct propagation
(see e.g., Ref. 31

A. Transmission coefficients

In the following, the partr™(Q,,Q,), 7¢%Q,,Q,),
and 70(Q,,Q,) of the total transmission coefficier
=7+ 760+ 7 are presented as quantities depending
on the energyr (), of the incoming electrorifrom the left
electrode and on the energyi(), of the outgoing electron
(to the right electrode, see Fig. 5 as a first examplée
transmission remains elasticlf,=(),. Such processes are
contained in the);=(}, stripe extending in the graphical
representation of the transmission coefficients from the
lower-left to the upper-right corndsee Fig. 5 and the fol-
lowing (Fig. 6); note that we use the term “stripe” instead of
“line” to account for the lifetime broadening of all electron-
vibrational level$. The part of the();-Q), plane where(),
>(), (above the); =), stripe corresponds to transmission
processes in which the incoming electron loses energy
whereas it gains energy from the vibrational DOF foy
>, (below theQ);=(, stripe. The superexchange mecha-
nism of electron transmission should dominate foy,Q),
> w, whereas the sequential transfer would become of some
importance ifQ},,Q,~w,. To have a proper graphical rep-
resentation of the transmission coefficients the energy scale
has been chosen in such a way that the en&gysite en-
ergy of the wire elementsequals zero. The energy depen-
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FIG. 5. Reference electron transmission coefficients of a mo- ;' 0 E]
lecular wire with two electronic levels versus the energy of the 4"
incoming electroniQ,=E, (from the left electrodg versus the
energy of the outgoing electrdi(), =E; (into the right electrode

Lo ] 0.0005 -200
and for the absence of electron-vibrational coupliBgandE, are - —
given in meV and the transmission coefficients in 1/eVhe T_fac
parameters used for the calculations &g=0, V=100 meV, 200 ) 300
fhoyp=40 meV, fy,=4 meV, 7.4=1/2y,,, background line Er

broadening is 2 meV, angl,e,— gexc= 0. Room-temperature condi-
tions have been chosefa) Superexchange paft . (b) Sequen-
tial part 7°% [note the different scale compared &™].

dence of the coupling ratds™(Q,) andT'®(Q,) will be ,
responsible for thos€,-Q), regions which contribute to the ,)}
total transition rate, Eq(60). In this manned (X(Q,) may : ;
define an upper limit for the energy of the incoming electron "i
whereasI'(®(Q,) fixes a lower limit for the energy of the 0-0005\ =z

200

outgoing electron. However, we will not consider this par- T
ticular influence of the coupling rates but will analyze the
whole -}, dependence of the transmission coefficients in | £t
drawing this quantity versus an appropriate part of@he, -
plane.
The discussion will be carried out in two ways. First, to
have a model which is simple enough to demonstrate the FIG. 6. Electron transmission coefficients of a molecular wire

influence of the electron-vibration coupling we consider it two electronic levels modulated by a single vibrational coor-
two-level wire (stemming from a two-site systgnHere, we  ginate versus the energy of the incoming electhd®, = E, (from
can study how the vibrational parameter@lectron- ihe left electrodeand versus the energy of the outgoing electron
vibrational coupling strength, vibrational level broadening,ﬁgr:Er (into the right electrode E, andE, are given in meV and
vibrational frequency distributiondetermine the different the transmission coefficients in 1/m&VThe parameters used for
types of transmission coefficients. As a more realistic modeihe calculations ar€,=0, V=100 meV, & =40 meV, %y,
a six-level wire model is used in a second part. =4 meV, 7,4=1/2y,,, background line broadening is 2 meV,
Figure 5 shows the superexchange contribufié, Eq. Onei— Yexc= 1, and thermal energy is 1 mef#) Superexchange part
(66), and the sequential contributidi**®, Eq. (67), to the  7(. (b) Sequential parf**%. (c) Factorized par?(™. (d) Total
total transmission coefficient for the absence of any electrontransmission coefficientTo compute the transmission coefficients,
vibrational coupling. This case is achieved if the displace-+the inclusion of ten vibrational levels appeared to be sufficient.
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FIG. 7. Total electron transmission coefficient of a molecular

wire with two electronic levels modulated by a single vibrational ;e \yith two electronic levels modulated by two vibrational coor-
coordinate versus the energy of the incoming electbdh =E, _dinates versus the energy of the incoming electiéh=E, (from
(from the left elef:trod)e anq versus the energy of the .outglomg the left electrodeand versus the energy of the outgoing electron
electronz ), =E, (into the right electrode E, andE, are givenin ) _ g (into the right electrode E, andE, are given in meV and
meV and the transmlsspn coefficients in 1/meWhe parameters the transmission coefficients in 1/m&VThe parameters used for
used for the calculations ard,=0, V=100meV, hwip  the calculations ar&,=0, V=100 meV, low-frequency vibration
=40 meV, fiy,i,=4 meV, 7= 1/2y,;,, background line broaden- 7 4, =8 meV, high-frequency vibratior wy,=80 meV, level
ing is 2 MeV,gpe~ Jexc— 1.5, and thermal energy is 1 meV. broadening equal for both mode&y,ip=2 meV, 7= 1/2yy |
background line broadening is 1 mey{low) ,e,— g(Iow)¢y= 1.5,
ments are removed between the PES belonging to the wir@(high),e,—g(high)ex=1, and thermal energy is 20 meV.
and those belonging to the electrod@R (= Jexc and thus ) ) _ o
E,=0; all other parameters used in the calculation are given 'he influence of the coupling to a single vibrational mode
in the figure captions As a result all vibrational overlap IS Shown in Fig. 6. For the chosen value of the electron-
integrals reduce to Kronecker#& function, but vibrational vibrational coupling strengtl(rec_)rganlzatlon energy is 0.04
level broadening remains, resulting in the line broadening ir?v) th_e superexchange part 8is reduced by_ one order of
the transmission factor. In particular, the transmission fac:topq"’Ign'tUde compared to the case of vanishing electron-

. ' . vibrational coupling but shows a reacher structure in the
corresponding to the factorized part of the complete quantlt)h : .
vanisheqdthis can be easily clarified in writing E¢468) for - pla_ne. And the sequential and fa_ctorl_zed parts b_eco_me
of some importance. If the electron-vibrational coupling is

FIG. 8. Total electron transmission coefficient of a molecular

Obt"’_‘i_nEd for7(**9 shown in Fig._ §b). But there_ are tWWo  gmple the reorganization energy, Eg4), amounts to 0.09
additional peaks fof), # (), following from inelastic transi- ey and the transmission coefficient shows different vibra-
tions caused by the coupling to the environmental DOFtjonal satellites of the two main peaks. They are positioned

Once this coupling is remove@/anishing vibrational level not only on the,=Q, stripe but also outside, demonstrat-
broadening all these peaks disappear which can be easily

confirmed by an analysis of E@67). Note also that7(s% 250
shown in Fig. 5 is nearly two orders-of-magnitude smaller

than7(9. As expected7(® dominates the transmission co-

efficient if the electron-vibrational coupling is absent.

PRbigE e
Like in Fig. 5 we will also observe in the following fig- : }y\wﬁy
, 3& f”L-.’i
bl

ures regions in th&€),-Q, plane where the complete trans-

mission coefficient becomes negative. Although these nega- 0.00007 g 250
tive contributions may be compensated once the total rate, - y 2 i /
Eq. (60), has been calculated, they indicate an ill-defined rate

expression. But it is well known how to overcome this prob- -250 EOr 250

lem (see, e.g., Refs. 33 and ¥3nstead of calculating rate
expressions one has to determine the complete memory ker- g, 9. Total electron transmission coefficient of a molecular
nel of the GME, Eq.(B3), which now has to be used t0 wire with six electronic levels modulated by a single vibrational
determine the electronic level populatiofi$he importance coordinate versus the energy of the incoming electidd = E,

of an improved iteration of the rate expressions has been alg@rom the left electrodeand versus the energy of the outgoing
underlined in Ref. 45.In particular, the possible importance electronzQ,=E, (into the right electrode E, andE, are given in

of memory effects indicates that electron-vibrational cohermeV and the transmission coefficients in 1/meWhe parameters
ence is present, and, following from this, that the electronused for the calculations ar€Ey=0, V=100 meV, Aoy
vibrational dynamics proceed in a region beyond a pure hop=40 meV,# y,j,=4 meV, .= 1/2y,1,, background line broaden-
ping transfer. ing is 2 meV,gnei— Jexe= 1, and thermal energy is 1 meV.
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FIG. 10. Current-voltage characteristics of the wire discussed in

Fig. 7 (the case of symmetrically applied voltad®; has been taken
0.5 eV above the Fermi edge in the unbiased cdaeFourth-order
reduced current according to EGZ0) (full line, % vy,;,=8 meV,
Onev—Jexc= 2, all other parameters as in Fig), 7superexchange”
contribution ¥ (dashed ling “sequential” contribution j (9
(long-dashed ling and “factorized” contributionj" (dotted ling.
(b) Reduced second-order currérel’ (full line) and reduced total
current I/el’y according to Eq.(69 [long-dashed line:AT,
=10 meV, dashed linefiI'y=5 meV, dotted linexl'(=1 meV,
all other parameters as i@)]. (c) Reduced total current/el’,
according to Eq(69) [A'g=5 meV; full line: gnei— Gexc=2 (Ey
=160 meV); long-dashed line: Onev= Jexc= 1.8
(Ex=130 meV), dashed lin@ e~ Jexc=1.5 (E;, =90 meV); dot-
ted line: gpey—9exc=1 (E,=40 meV), all other parameters as
in part(a)].

PHYSICAL REVIEW B 66, 2454XX (2002

realistic wire model is used in Fig. 9 showing the transmis-
sion coefficient for a six-level wire.

All given examples demonstrate the capability of the cho-
sen approach to compute the left—right electron transmission
ratek, g, and they underlined the importance of an inelas-
tic electron transmission. The influence of these inelastic
contributions on dV characteristic of a molecular wire are
demonstrated in the last part.

B. Current-voltage characteristics

As a first application of the formalism presented so far we
compute the current-voltage characteristics for the reference
case of a two-site wire modulated by a single vibrational
coordinate and in the presence of a symmetrically applied
voltage (the wire levels stay at their zero-bias position
Since we are mainly interested in effects originated by the
vibrational coordinate it suffices for the following to reduce
the frequency dependence of the coupling rétésEq. (60)]
to that of the Fermi distribution, i.e., we sdt®(w)
=T ofyx(w) where I'y=|V/%#|?N depends on the constant
transfer-matrix elemernf and the constant electrode density
of statesN\' (remember also the neglect of wire-level renor-
malization due to the presence of the electrode states

If the approximation taken fof () is also introduced
into the second-order rate expressions the entire current fol-
lows as[cf. Eq. (B8)]

1/eTo=jM+T "), (69)

i denotes the expression which is obtained from second-
order electrode-wire coupling contributions. It is easily de-
rived when using the formulas of Sec. [sind Eq.(B8)]. The
fourth-order reduced currept'V) reads

0= [ 40,00,T0,,0){fram(5 01— V12

X[ 1= frerm(f Qo+ €VI2) ]~ frami A1+ €VI2)
X[l_fFerm(ﬁQZ_eV/z)]}- (70)

According to the separation of the transmission coefficient
into the various contributions, Eq$66)—(68), the fourth-
order current can be split into the “superexchange,” the “se-
quential,” and the “factorized” contributiong®, j¢9 and

i, respectively. Their dependence on ttsgmmetrically
applied voltage is shown in Fig. {@. The parameters used
refer to the transmission coefficients presented in Fig. 7.
However, a somewhat larger vibrational level broadening
and a larger reorganization energy has been taken. Moreover,
the factorized part of the fourth-order transmission coeffi-
cient, Eq.(59), is determined in solving numerically the rate
equation for the vibrational level populatioRg,y(t). Even

this factorized parj? dominates the total fourth-order cur-
rent, although the superexchange contribution should be fa-
vored since up to a bias of 0.8 V the wire levels are out of

ing the importance of inelastic electron transmissionresonance with the occupied electrode levels.

channeld? Obviously the satellite structure becomes more The voltage dependence of the second-order contribution
complex if the transferred electron is coupled to two vibra-j!"’ can be found in Fig. 1®). To get the totalreduced
tional modes as can be seen in Fig. 8. A somewhat moreurrentl/el’y, Eq.(69), we have to fix the quantit§ [’y to a
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range less than 10 mé¥.As can be seen just in this weak wire-level renormalization due to the wire-electrode cou-
electrode—wire coupling case the second-order contributiopling. In fact it becomes possible to combine the very effi-
is remarkablly modified by the fourth-order one. A detailedcient projection operator approach which accounts for
inspection of the wayj("") and j!V) are influenced by the electron-vibrational couplings with infinite-order consider-
electron-vibrational coupling indicates the dominance of theations of the wire-electrode couplifg.Such considerations
fourth-order contribution. Finally, for the intermediate value will extend considerably the validity of the approach given
fil'o=5 meV the total current is drawn in Fig. ) depen- here.

dent on the electron-vibrational coupling strength. The in-

crease of the current with an increase of the electron- ACKNOWLEDGMENTS
vibrational coupling for the range of resonant transitions o . ) ) .
from the left electrode into the wire levels is obvious. llluminative discussions with E. G. Petrov and P.riggi

are gratefully acknowledged.

VIl. CONCLUSIONS APPENDIX A: DISSIPATIVE PART OF THE DENSITY

A comprehensive theory of inelastic electron transmission OPERATOR EQUATIONS

through molecular wires has been offered in the present pa- In the following a detailed expression for the dissipative
per. The description is based on a consequent inclusion of theuperoperato> introduced in Eq.(12) will be given. To

electron-vibrational coupling, considers vibrational energysimplify the considerations and since details of vibrational
relaxation and dephasing, and accounts for coherence in thelaxation are of less importance for the considerations in
course of the transfer. The theory ends up with a rate equahis paper we apply the well-known secular approximation
tion (possibly including memory effedtsor those electronic  which in operator notation is given by the so-called Lindblad

state populations which are of relevance for the electronype of dissipative superoperatee, for example, Ref. 44
transmission. Since the rate expressions are given as a power

expansion with respect to the wire—electrode coupling the -~ 1 PN PN

description is beyond a simple “Golden Rule” approach. _DP—_EA {2(LaLA )+ —LapLa}. (A1)
Calculating the electrode-wire-electrode transfer rate in the R

fourth order with respect to the wire-electrode coupling al-The new operators redd, =1\, .nIIm With the projector

lows to generalize standard expressions for the wire transsn the electronic statdd,,, Eq.(21) (remember thatn cov-

mission rate to the inclusion of inelastic-scattering events afrs all involved electronic levels and with L N

the vibrational quanta of the wire. On one hand, there ap— m|XmN><Xmm|- The latter quantity generates tran-

pears a simple modification of the pure electronic rate for;iions from the vibrational state,,y, to the statey,,y. How

mula by augmenting the involved electronic levels via the,[0 compute the respective transition rdtg,, ...y has been

addition O.f th? vibrational level manifold. But there ar_e_fur- well documented in the literature and should not be repeated
ther contributions to the rate which guarantee the validity there (see, e.g., Ref. 31For further purposes we introduce
the rate formula also when the wire levels come into reso- I . o

Zm N mme mN mv—mn Which becomes identical to

nance with the electrode levels. All contributions to the m™
transfer rate could by classified via the so-called Liouville
space pathways. The feasibility of the approach could be Y= 2%l xmwn) Xl (A2)
demonstrated by some first calculations of current-voltage M

characteristics concentrated in a two-level wire and a Ssymgith the electron-vibrational level broadenirigverse life-

metrically applied voltage_. And i|_1deed, a pronounced i”'time) Vo= myvmy/2. Accordingly the dissipative part
crease of the current with an increase of the electronbf the density operator equation is written as

vibrational coupling has been found.
Although the presented numerical calculations are re- . . A
stricted to the case of a single and of two vibrational coordi- —Dp=-— ( 52 Ymllm ,P)
nates the approach may account for an arbitrary large num- " +
ber (if the three-time correlation functions are calculated o
using the spectral densities of the vibrational coordinates +E Z v I (Ol v mn - (A3)
Furthermore, the description can directly be tied to quantum m M.N

chemical calculations of the adiabatic wire levels and on 'ein Sec. V we need the solution of the density operator equa-

spective potential-energy surfaces. And as a third directlfjon exclusively defined by,, Eq. (12). It can be formally
possible extension we refer to a renunciation of the simplgyritten as

model of a symmetrically applied voltage. More involved

descriptions are knpvyn which,.allready on the level of the p(1) =Up(t,to) p(to), (A4)

used simple tight-binding description of the wire, may allow ) ) )

for a self-consistent formulation of the voltage drop acrosgvhere the time-evolution superoperatdg has been intro-

the wirel” (All these questions are undergoing study andduced. Taking the matrix elemengs,,={em|p|¢n), which

results will be published in the near future. just define operators in the state space of the active vibra-
Of more basic importance would be the inclusion of thetional coordinates, we may write
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R . nition of the projector and taking into account thég and
p(1)=Uo(t,t) 2% Prmn(to)em){nl the dissipative part is diagonal with respect to the electronic
ma states, whereas the transfer coupling has only off-diagonal
contributions.

:nzm | @m)(@nll Omnhmltto) Pmir(to) + (1= Om.n) For a further simplification we note i{( eml PLO| om)}
_ R _ =trip{{em| LvO|em)}, whereO has to be identified with
X Ump(t—to) pmn(to)Un (t—to)]. (A5) respective parts of both terms on the right—hand side of Eq.

The time propagation of the density operator differs depend(B2) [O= Pp(t) as well asO=u(t—1t)QLPp()]. If we
ing on the concrete type of matrix elements, i.e., if the diagreplaceO by Pp, we easily verify that this term vanishes.
onal or off-diagonal elements are affectéd,, solves the The replacement oD by U(t—t)QLPp(t) leads to the
vibrational density operator equation diagonal in the elecmemory kernel of the GME valid for the electronic state
tronic quantum number whereds,, generates the time populations,
propagation of the off-diagonal elements. It is given as a
generalized time-evolution operator including dissipation J

w0=3 [ drMaopt-n. 83

Um(t)=ex;{—fll—(ﬁwm+Hm— %&m)t). (A6) B B
Here, we already changed fromto 7=t—t and combined
For further use we will split off the part including,,, write ~ the memory kernel with the unit-step functié(r). Fur-
exp(e,1)Un(t) instead ofU ,(t), and introduce thermore, a trace with respect to the complete active system
DOF has been introduced to get

Z’mM:me_i')’mM- (A7)
~ (t)=— O ()te{IT,L\Ut) QL PIT (B4)
Once U, (t) has been expanded with respect to the M o v VP

vibrational eigenstates oM, it simply reads Un(t)  Additionally, it was possible to rewrit@£r [, since we

=S vexp(—iomt) [Xmm){Xmul- noted the relationrII,,=PIl,, and wrote QLPIl,,
= Qﬁvpﬂm: ﬁvpﬁm
APPENDIX B: THE GME FOR THE STATE Equation (B4) will be the starting point for all further
POPULATIONS considerations. It has been already derived in Refs. 32 and

33 (and discussed more recently in Ref. 31 and 45-47
Here, a generalization is given by taking into account vibra-
tional dissipation via the coupling of the reaction coordinates
(active vibrational coordinatg¢go other thermalized vibra-
tional DOF.

If the memory effects in the GME are of less importance
one can change to a standard rate @&), where the tran-
sition ratesk,,_,, are given by the zero-frequency Fourier
transform ofM,,, i.e., we get

According to the projection operator approach briefly ex-
plained in Sec. Il B we give here some details on the deri-
vation of a GME valid for the total electronic level popula-
tions. It is based on the equation of motid¢®) for the
reduced density operator, E), of the electron-vibrational
system.

In a first step we will derive the Nakajima-Zwanzig iden-

tity for 7?;3, whereP denotes the projection superoperator
defined in Eq(20). The introduction ofP and the orthogonal
complement,@=1-"P, into the density operator Eq9)

leads to a separation into two equations, one obeye@by Ki—n=
and one byQp. Taking the solution of the equation f@p
including the assumptiorQ;B(to)=0 and introducing the The Green’s superoperat@f( ) is introduced by noting

My @=0)= —itr{IT,LyQG(w=0) QL P, }.
(B5)

time-propagation superoperator QL=Ly+ QLy leading to the following notation for the
. time-propagation superoperator, E&1), U(t) =exp[—i(L,
UCt)=exp{—i QLt}, (B1)  +9Qr\)t}. This expression enables us to formally compute
. A .. . the one-sided Fourier transform of the time-propagation su-
;:ilt;)lpsed equation foPp results(Nakajima-Zwanzig iden- peroperator é— +0):
d . t _ . W . 1.
Epp(t)=—i77£73p(t)—f dt PLUt— 1) QL Pp(1). fo dte“Ut)=i(0—Lo— QLy+ie) '=ig(w).
t
i (B2) (B6)
Using Eq.(22) it is possible to derive the related equations of Before introducing a power expansion bf,, we give a
motion for the state populations. formula for the stationary current through the wire based on

Next we note the important properti®C,=L,P=0 and the GME, Eq.(B3), and used in Sec. VI B for concrete com-
PLyP=0. Both relations are simply verified using the defi- putations.
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1. Expression for the stationary current
In the stationary case and at an applied voltage as shown ° ° o @ °

in Fig. 1(b) the stationary curreritmay be obtained from

Jd
=1 =2 S P, 87) ° e @ 0

As is well known the time derivative of the electron
population has to be replaced by the right-hand side of
the respective rate equation. Assuming stationary . : : :
conditions, the nonlocal expressions in EB3) reduce to

3 Mm(0=0)P where P™ denotes the stationary

population of leveln (the Fermi distribution in the case of

the two electrodgs Then it is easy to show that the follow- e

ing current formula becomes valid:

kLAaka_}R_ kRﬁaka_)L ° ° @ 0
lle=k _gr—Kr_, t . ves
L—R R—L é kaHL_'—kaﬂR

(B8)

The concentration on stationary conditions automatically de-.
fines the current via the zero-frequency memory kernels, EOE
(B5), i.e., by the ordinary rate expressiokg_,,,. The first
term. on the rlght-hand Sldg .Of Equ) is given by direct with 11 stands for the elctronic part of the initial value of the den-
Ie_ft-nght and right-left transitions Whlch_are of fourth orderrﬁity Operaton(t)=0)=py ol e1)(es|=r4fl,. If Gy is applied the
Wlth respect to the electrode-_WIre coupling. The second ter f'action of the respective (foupling Hamiltonian may produce density
in the above current formula includes all those rates connect- : . : R

ing one of the electrodes with one of the wire levels. Those’Perators with an off-diagonal electronic part, €2 01)(¢2|
rates, as well as the whole contribution to the current, are of"d#2.1#2)(¢1|. These new density operators are affected by the
second order with respect to the electrode-wire coupliﬁg. Th&reen's superoperatd@ which corresponds to a dissipative time
respective expression for the current has been used reCenE‘ﬁllolution if translated from the frequency to the time domain. In
in Ref. 28 to describe charge motion througg, @olecules. tis manrfilr Enelpm;eedil fu;ther up ’\tlo Tilpo;\? t v;here':\lthi density
[However, the approach neglected any formation of coher2Perator PN.N—1eN)(¢N—1] or pN—1,N|¢gN—-1)(¢N| has
ence described by the first term in E@®8) and considered Peen generatel(N—1) —onefold application otiLy.) What re-
the vibrational assisted tunneling of the electron through théains is the final application aty leading topN,N|eN){¢N|. The

Cgo molecule and vibrational relaxation separately. resultﬁng rate express.ion ingorporates th&2(1)th power of the.
coupling operator. It is obvious that the propagation to the final

2. Perturbational expansion of the memory kernel form of the density operator can be achieved in different ways, i.e.,
by going along different Liouville space pathways.

FIG. 11. Liouville space pathways describing different contribu-
ons to the memory kernel, EqB13), which refers to the time
volution of the density operator for a transition from state 1
(upper-left cornerto staten=N (lower-right corney. The circle

The power expansion d¥l,,,, with respect tol,, can be
achieved by establishing an equation of motion §t). First, we considerlfy(t)=exp(—iLgt) and get Ply(t)
From Eg. (B6) we can deduce the equatiorggl(w) =Uy(t)P="P, which gives QUy(t)=Uy(t) O=Uy(t)—P
—QL,)G(w)=1 where a zero-order Greens superoperator= QUo(t) Q. If changed to the Green's operatgp(w) it
has been defined according @ ie— L) Go(w)=1. Mul- reads(note that the Fourier transform of the unit-step func-
tiplication by Go(w) leads to a superoperator version of tion appears hejeQGy= Gy Q= 0G,0=G, with
the ubiquitous Dyson equation G(w)=Gy(w)

+Go(w) QLyG(w). If rearranged it gives a solution foi( ) G =G _ _Pp. B11
in terms ofGo(w) and QLy, o(@)=Go(@) = e (B19)
% Accordingly, the more symmetric version of E10) is
Gw)= 20 (Qo(w)Qﬁv)on(w)- (B9) obtained as
1= ©
This expansion is inserted into E(B5) (where we finally LyOG(@) QLyP= 2, Lo(Go(w)Ly) Go w) LyP.
can restrict ourselves to even powers(gf). Let us concen- j=0
trate on the pure superoperator part first, (B12)
sc If combined with the two projection operatof$,, and I1,,
LvOG(w) QL P= E LyO(Go( @) QL) Go(w) QL\P. the resulting frequency-dependent memory kernel reads
i=0
(B10) - - A
M =—i2 tr{ll,L Ly)2 1P L
One may use this formula but can also change to a form m( @) I,Zo Ly (Gol@) Ly)™ P}
where the projectog is not combined withCy, but with G,. (B13)
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This expression serves as a starting point for the considet-iouville space pathwaygsee Refs. 33 and 41ogether with
ation of all types of charge-transfer processes through the detailed explanation are given Fig. 11.
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